Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
Regen Ther ; 27: 365-380, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38694448

RESUMEN

Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.

2.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566100

RESUMEN

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Asunto(s)
Interferón Tipo I , Neuroblastoma , Enfermedad de Parkinson , Ratones , Animales , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedades Neuroinflamatorias , Células Endoteliales/metabolismo , FN-kappa B/metabolismo , Análisis de la Célula Individual , Ratones Endogámicos C57BL
3.
Plants (Basel) ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674464

RESUMEN

Cold stress severely restricts growth and development, reduces yields, and impairs quality in tomatoes (Solanum lycopersicum). Amylase-associated starch degradation and soluble sugar accumulation have been implicated in adaptation and resistance to abiotic stress. Here, we report a ß-amylase (BAM) gene, SlBAM3, which plays a central role in tomato cold tolerance. The expression of SlBAM3 was triggered by cold stress. SlBAM3 knockout using the CRISPR/Cas9 system retarded starch degradation and reduced soluble sugar accumulation in tomato plants, eventually attenuating cold tolerance. Expression analysis revealed that the SlBAM3 transcript level was boosted by MeJA. Furthermore, MYC2, an essential component of the JA signaling pathway, could bind to the SlBAM3 promoter and directly activate SlBAM3 transcription, as revealed by yeast one-hybrid and dual LUC assays. In addition, the suppression of MYC2 resulted in increased starch accumulation, decreased soluble sugar content, and reduced tolerance to cold stress in tomato plants. Taken together, these findings demonstrate that JA positively regulates ß-amylase-associated starch degradation through the MYC2-SlBAM3 module in tomato during cold stress. The results of the present work expand our understanding of the mechanisms underlying BAM gene activation and starch catabolism under cold stress. The regulatory module of SlBAM3 can be further utilized to breed tomato cultivars with enhanced cold tolerance.

4.
RSC Adv ; 14(16): 11276-11283, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38595709

RESUMEN

Due to their small interlayer spacing and a low lithiation potential close to Li+ deposition, current graphite anodes suffer from weak kinetics, and lithium deposition in a fast-charging process, hindering their practical application in high-power lithium-ion batteries (LIBs). In this work, expanded graphite incorporated with Li4Ti5O12 nanoparticles (EG/LTO) was synthesized via moderate oxidization of artificial graphite following a solution coating process. The EG/LTO has sufficient porosity for fast Li+ diffusion and a dense Li4Ti5O12 layer for decreased interface reaction resistance, resulting in excellent fast-charging properties. EG/LTO presented a high reversible capacity of 272.8 mA h g-1 at 3.74 A g-1 (10C), much higher than that of the original commercial graphite (50.1 mA h g-1 at 10C) and even superior to that of hard carbon. In addition, EG/LTO exhibited capacity retention rate of 98.4% after 500 cycles at 10C, demonstrating high structural stability during a long cycling process. This study provides a protocol for a solution chemistry method to prepare fast-charging graphite anode materials with high stability for high-power LIBs.

5.
Exp Neurol ; 376: 114750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492636

RESUMEN

Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated. This study elucidated the microRNA (miRNA) expression profiles of two types of EVs that promote nerve regeneration. The functions of these miRNAs were screened in vitro. Among the 12 overlapping miRNAs, miR-25-3p was selected for further analysis as it markedly promoted axon regeneration both in vivo and in vitro. Furthermore, knockdown experiments confirmed that PTEN and Klf4, which are the major inhibitors of axon regeneration, were the direct targets of miR-25-3p in dorsal root ganglion (DRG) neurons. The utilization of luciferase reporter assays and functional tests provided evidence that miR-25-3p enhances axon regeneration by targeting Tgif1. Additionally, miR-25-3p upregulated the phosphorylation of Erk. Furthermore, Rapamycin modulated the expression of miR-25-3p in DRG neurons. Finally, the pro-axon regeneration effects of EVs were confirmed by overexpressing miR-25-3p and Tgif1 knockdown in the optic nerve crush model. Thus, the enrichment of miR-25-3p in EVs suggests that it regulates axon regeneration, proving a potential cell-free treatment strategy for nerve injury.


Asunto(s)
Axones , Vesículas Extracelulares , Ganglios Espinales , Proteínas de Homeodominio , MicroARNs , Regeneración Nerviosa , Células de Schwann , Animales , MicroARNs/genética , MicroARNs/metabolismo , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/genética , Vesículas Extracelulares/metabolismo , Axones/fisiología , Células de Schwann/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Piel/metabolismo , Factor 4 Similar a Kruppel , Ratones Endogámicos C57BL , Células Madre/metabolismo
6.
Front Pediatr ; 12: 1348342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496369

RESUMEN

Introduction: Patients with systemic lupus erythematosus (SLE) are at a higher risk of developing cancer, particularly hematological malignancies such as lymphoma and leukemia. However, existing studies on this topic that assess cancer incidence following SLE diagnosis are limited. In addition, SLE can be diagnosed after cancer, although such cases in children have been rarely reported. Case report: We present the case of a 2.6-year-old boy who presented to our institute with fever and abdominal pain. His physical examination revealed a periumbilical mass, which was pathologically diagnosed as Burkitt's lymphoma. Autologous stem cell transplantation was performed to consolidate the effect of chemotherapy and reduce the risk of cancer relapse. He was diagnosed with SLE 5 years later, following the presentation of a fever with rash, positive autoantibodies, decreased complement, and kidney involvement. At the final follow-up, the patient was still alive and showed no recurrence of Burkitt's lymphoma or disease activity of SLE. Conclusion: Despite the low frequency of SLE in children with lymphoma, cancer and SLE may be induced by a common mechanism involving B-cell cloning and proliferation. Therefore, hematologists and rheumatologists should be aware of the occurrence of these two conditions during patient follow-up.

7.
Opt Express ; 32(4): 6423-6431, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439345

RESUMEN

Intracavity optical metasurfaces with compact and flexible light manipulation capabilities, effectively enrich the implementation of miniaturized and user-friendly orbital angular momentum (OAM) laser sources. Here we demonstrate a wavelength-tunable figure-9 Yb-doped vortex fiber laser solely with standard non-polarization-maintaining single-mode fibers, which utilizes a gap-surface plasmon (GSP) metasurface as the intracavity mode regulation component to generate OAM beams, extending the avenues and related applications for cost-effective OAM laser sources. Gained by the broadband operation range of the metasurface, the figure-9 fiber laser could emit OAM light with center wavelength tunable from 1020 nm to 1060 nm and of high mode purity (about 90%). OAM beams with different topological charges such as l = ±1 have been obtained by changing the metasurface design. The proposed fiber laser with the intracavity GSP metasurface provides a reliable and customized output of OAM beams at the laser source, holding great promise for a wide range of applications in optical communications, sensing, and super-resolution imaging.

8.
J Hazard Mater ; 469: 134020, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38521037

RESUMEN

Dinotefuran is a chiral neonicotinoid that is widely distributed in environmental matrices, but its health risks to different organisms are poorly understood. This study investigated the neurotoxic responses of honeybee/cotton aphid nicotinic acetylcholine receptors (nAChRs) to chiral dinotefuran at the enantiomeric scale and demonstrated the microscopic mechanism of species selectivity in nAChR-mediated enantioselective neurotoxicity. The findings indicated that (S)-dinotefuran had a higher affinity for honeybee nAChR than (R)-dinotefuran whereas both enantiomers exhibited similar bioactivity toward cotton aphid nAChR. The results of dynamic neurotoxic processes indicated the association of conformational changes induced by chiral dinotefuran with its macroscopic neurotoxicity, and (R)-dinotefuran, which exhibit low toxicity to honeybee, was found to induce significant conformational changes in the enantioselective neurotoxic reaction, as supported by the average root-mean-square fluctuation (0.35 nm). Energy decomposition results indicated that electrostatic contribution (ΔGele) is the critical energy term that leads to substantial enantioselectivity, and both Trp-51 (-2.57 kcal mol-1) and Arg-75 (-4.86 kcal mol-1), which form a hydrogen-bond network, are crucial residues in mediating the species selectivity for enantioselective neurotoxic responses. Clearly, this study provides experimental evidence for a comprehensive assessment of the health hazards of chiral dinotefuran.


Asunto(s)
Síndromes de Neurotoxicidad , Receptores Nicotínicos , Animales , Abejas , Estereoisomerismo , Neonicotinoides/toxicidad , Neonicotinoides/química , Guanidinas/toxicidad , Guanidinas/química , Nitrocompuestos/toxicidad , Nitrocompuestos/química
9.
J Agric Food Chem ; 72(8): 4358-4366, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349745

RESUMEN

The hydrolytic products of chitosanase from Streptomyces avermitilis (SaCsn46A) were found to be aminoglucose and chitobiose, whereas those of chitosanase from Bacillus subtilis (BsCsn46A) were chitobiose and chitotriose. Therefore, the sequence alignment between SaCsn46A and BsCsn46A was conducted, revealing that the structure of BsCsn46A possesses an extra loop region (194N-200T) at the substrate binding pocket. To clarify the impact of this loop on hydrolytic properties, three mutants, SC, TJN, and TJA, were constructed. Eventually, the experimental results indicated that SC changed the ratio of chitobiose to chitotriose hydrolyzed by chitosanase from 1:1 into 2:3, while TJA resulted in a ratio of 15:7. This experiment combined molecular research to unveil a crucial loop within the substrate binding pocket of chitosanase. It also provides an effective strategy for mutagenesis and a foundation for altering hydrolysate composition and further applications in engineering chitosanase.


Asunto(s)
Bacillus subtilis , Quitosano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Polimerizacion , Glicósido Hidrolasas/química , Alineación de Secuencia
10.
Regen Biomater ; 11: rbae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414797

RESUMEN

For repairing peripheral nerve and spinal cord defects, biomaterial scaffold-based cell-therapy was emerged as an effective strategy, requiring the positive response of seed cells to biomaterial substrate and environment signals. Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization. However, the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed. Given that, this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells (SKP-SCs). Chitosan-film with different ridge/groove size was fabricated and applied for the SKP-SCs induction. Results indicated that SKP-SCs cultured on 30 µm size microgroove surface showed better oriented alignment phenotype. Induced SKP-SCs presented similar genic phenotype as repair Schwann cells, increasing expression of c-Jun, neural cell adhesion molecule, and neurotrophic receptor p75. Moreover, SKP-SC-secretome was subjected to cytokine array GS67 assay, data indicated the regulation of paracrine phenotype, a panel of cytokines was verified up-regulated at secreted level and gene expression level in induced SKP-SCs. These up-regulated cytokines exhibit a series of promotive neural regeneration functions, including cell survival, cell migration, cell proliferation, angiogenesis, axon growth, and cellular organization etc. through bioinformatics analysis. Furthermore, the effectively polarized SKP-SCs-sourced secretome, promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells, and augmented neurites growth of the cultured motoneurons, as well as boosted axonal regrowth of the axotomy-injured motoneurons. Taken together, SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film, displayed the oriented parallel growth, the transition towards repair Schwann cell genic phenotype, and the enhanced paracrine effect on neural regeneration. This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation, that facilitating to provide promising engineered cell-scaffold in neural injury therapies.

11.
Small ; : e2311880, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366127

RESUMEN

Iodide perovskites have demonstrated their unprecedented high efficiency and commercialization potential, and their superior optoelectronic properties, such as high absorption coefficient, high carrier mobility, and narrow direct bandgap, have attracted much attention, especially in solar cells, photodetectors, and light-emitting diodes (LEDs). However, whether it is organic iodide perovskite, organic-inorganic hybrid iodide perovskite or all-inorganic iodide perovskite the stability of these iodide perovskites is still poor and the contamination is high. In recent years, scholars have studied more iodide perovskites to improve their stability as well as optoelectronic properties from various angles. This paper systematically reviews the strategies (component engineering, additive engineering, dimensionality reduction engineering, and phase mixing engineering) used to improve the stability of iodide perovskites and their applications in recent years.

12.
Sci Adv ; 10(5): eadl4661, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306421

RESUMEN

Exceptional points (EPs), unique junctures in non-Hermitian open systems where eigenvalues and eigenstates simultaneously coalesce, have gained notable attention in photonics because of their enthralling physical principles and unique properties. Nonetheless, the experimental observation of EPs, particularly within the optical domain, has proven rather challenging because of the grueling demand for precise and comprehensive control over the parameter space, further compounded by the necessity for dynamic tunability. Here, we demonstrate the occurrence of optical EPs when operating with an electrically tunable non-Hermitian metasurface platform that synergizes chiral metasurfaces with piezoelectric MEMS mirrors. Moreover, we show that, with a carefully constructed metasurface, a voltage-controlled spectral space can be finely tuned to access not only the chiral EP but also the diabolic point characterized by degenerate eigenvalues and orthogonal eigenstates, thereby allowing for dynamic topological phase transition. Our work paves the way for developing cutting-edge optical devices rooted in EP physics and opening uncharted vistas in dynamic topological photonics.

13.
BMJ Open ; 14(1): e074557, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238054

RESUMEN

OBJECTIVES: This study aimed to pool the efficacy in bowel movement and explore the change of gut microbiota on adult functional constipated patients after probiotics-containing products treatment. DESIGN: Systematic review and meta-analysis. DATA SOURCES: PubMed, Cochrane Library for published studies and ClinicalTrials.gov for 'grey' researches were independently investigated for randomised controlled trials up to November 2022. ELIGIBILITY CRITERIA, DATA EXTRACTION AND SYNTHESIS: The intervention was probiotics-containing product, either probiotics or synbiotics, while the control was placebo. The risk of bias was conducted. The efficacy in bowel movement was indicated by stool frequency, stool consistency and Patient Assessment of Constipation Symptom (PAC-SYM), while the change of gut microbiota was reviewed through α diversity, ß diversity, change/difference in relative abundance and so on. The subgroup analysis, sensitivity analysis and random-effect meta-regression were conducted to explore the heterogeneity. The Grading of Recommendations Assessment Development and Evaluation was conducted to grade the quality of evidence. RESULTS: 17 studies, comprising 1256 participants, were included with perfect agreements between two researchers (kappa statistic=0.797). Compared with placebo, probiotics-containing products significantly increased the stool frequency (weighted mean difference, WMD 0.93, 95% CI 0.47 to 1.40, p=0.000, I²=84.5%, 'low'), improved the stool consistency (WMD 0.38, 95% CI 0.05 to 0.70, p=0.023, I²=81.6%, 'very low') and reduced the PAC-SYM (WMD -0.28, 95% CI: -0.45 to -0.11, p=0.001, I²=55.7%, 'very low'). In subgroup analysis, synbiotics was superior to probiotics to increase stool frequency. Probiotics-containing products might not affect α or ß diversity, but would increase the relative abundance of specific strain. CONCLUSIONS: Probiotics-containing products, significantly increased stool frequency, improved stool consistency, and alleviated functional constipation symptoms. They increased the relative abundance of specific strain. More high-quality head-to-head randomised controlled trials are needed.


Asunto(s)
Estreñimiento , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Estreñimiento/terapia , Defecación , Probióticos/uso terapéutico , Simbióticos
14.
Light Sci Appl ; 13(1): 21, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233421

RESUMEN

Ultrathin multifunctional metalenses are demonstrated to control the multiple degrees of freedom of a single-photon source in hexagonal boron nitride.

15.
Micromachines (Basel) ; 15(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38258226

RESUMEN

SiCp/Al composite materials are widely used in various industries such as the aerospace and the electronics industries, primarily due to their excellent material properties. However, their machinability is significantly weakened due to their unique characteristics. Consequently, efficient and precise machining technology for SiCp/Al composite materials has become a crucial research area. By conducting a comprehensive analysis of the relevant research literature from both domestic and international sources, this study examines the processing mechanism, as well as the turning, milling, drilling, grinding, special machining, and hybrid machining characteristics, of SiCp/Al composite materials. Moreover, it summarizes the latest research progress in composite material processing while identifying the existing problems and shortcomings in this area. The aim of this review is to enhance the machinability of SiCp/Al composite materials and promote high-quality and efficient processing methods.

16.
Reprod Sci ; 31(4): 1034-1044, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38087182

RESUMEN

It is recognized that PCOS patients are often accompanied with aberrant follicular development, which is an important factor leading to infertility in patients. However, the relevant regulatory mechanisms of abnormal follicular development are not well understood. In the present study, by collecting human ovarian granulosa cells (GCs) from PCOS patients who underwent in vitro fertilization (IVF), we found that the proliferation ability of GCs in PCOS patients was significantly reduced. Surprisingly, PATL2 and adrenomedullin 2 (ADM2) were obviously decreased in the GCs of PCOS patients. To further explore the potential roles of PATL2 and ADM2 on GC, we transfected PATL2 siRNA into KGN cells to knock down the expression of PATL2. The results showed that the growth of GCs remarkably repressed after knocking down the PATL2, and ADM2 expression was also weakened. Subsequently, to study the relationship between PATL2 and ADM2, we constructed PATL2 mutant plasmid lacking the PAT construct and transfected it into KGN cells. The cells showed the normal PATL2 expression, but attenuated ADM2 expression and impaired proliferative ability of GCs. Finally, the rat PCOS model experiments further confirmed our findings in KGN cells. In conclusion, our study suggests that PATL2 promoted the proliferation of ovarian GCs by stabilizing the expression of ADM2 through "PAT" structure, which is beneficial to follicular development, whereas, in the ovary with polycystic lesions, reduction of PATL2 could result in the decreased expression of ADM2, subsequently weakened the proliferation ability of GCs and finally led to the occurrence of aberrant follicles.


Asunto(s)
Hormonas Peptídicas , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Ratas , Proliferación Celular , Células de la Granulosa/metabolismo , Hormonas Peptídicas/metabolismo , Síndrome del Ovario Poliquístico/metabolismo
17.
Adv Mater ; 36(11): e2310199, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38096904

RESUMEN

The expression of disease-specific membrane proteins (MPs) is a crucial indicator for evaluating the onset and progression of diseases. Urinalysis of in situ MPs has the potential for point-of-care disease diagnostics, yet remains challenging due to the lack of molecular reporter to transform the expression information of in situ MPs into the measurable urine composition. Herein, a series of tetrahedral DNA frameworks (TDFs) are employed as the cores of programmable atom-like nanoparticles (PANs) to direct the self-assembly of PAN reporters with defined ligand valence and spatial distribution. With the rational spatial organization of ligands, the interaction between PAN reporters and MPs exhibits superior stability on cell-membrane interface under renal tubule-mimic fluid microenvironment, thus enabling high-fidelity conversion of MPs expression level into binding events and reverse assessment of in situ MP levels via measurement of the renal clearance efficiency of PAN reporters. Such PAN reporter-mediated signal transformation mechanism empowers urinalysis of the onset of acute kidney injury at least 6 h earlier than the existing methods with an area under the curve of 100%. This strategy has the potential for urinalysis of a variety of in situ membrane proteins.


Asunto(s)
Proteínas de la Membrana , Nanopartículas , Nanopartículas/química , Urinálisis , ADN/química , Membrana Celular , Ligandos
18.
Bioact Mater ; 33: 572-590, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38111651

RESUMEN

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.

19.
J Plant Physiol ; 292: 154160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147808

RESUMEN

The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.


Asunto(s)
Respuesta al Choque por Frío , Cucumis melo , Respuesta al Choque por Frío/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Filogenia , Genoma de Planta , Genes Reguladores , Regulación de la Expresión Génica de las Plantas
20.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081290

RESUMEN

Vortex dynamics has attracted tremendous attention for both fundamental physics and applications of type-II superconductors. However, methods to detect local vortex motion or vortex jump with high sensitivity are still scarce. Here, we fabricated soft point contacts on the clean layered superconductor 2H-NbSe2, which are demonstrated to contain multiple parallel micro-constrictions by scanning electronic microscopy. Andreev reflection spectroscopy was then studied in detail for the contacts. Differential conductance taken at fixed bias voltages was discovered to vary spontaneously over time in various magnetic fields perpendicular to the sample surface. The conductance variations become invisible when the field is zero or large enough, or parallel to the sample surface, which can be identified as the immediate consequence of vortex motion across a finite number of micro-constrictions. These results demonstrate point contact Andreev reflection spectroscopy to be a new potential way with a high time resolution to study the vortex dynamics in type-II superconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA