Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Front Microbiol ; 15: 1419914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144224

RESUMEN

Microbiota in the reproductive tract of cattle play a vital role in maintaining normal reproduction. However, the information on microbiota in different parts of reproductive tracts with different genetic background is few. The aim of the present study was to describe and compare the microbiota in vagina, cervix and uterus of Yanbian cattle and Yanhuang cattle. The results showed that microbial diversity increases from the vagina to the uterus. The top three bacterial phyla in bovine reproductive tract were Proteobacteria, Firmicutes and Bacteroidetes, accounting for more than 85%. From the vagina to the uterus, the relative abundance of Proteobacteria gradually decreased, while that of Firmicutes gradually increased. Phylum-level Firmicutes and genus-level UCG_010 were significantly enriched in the uterus of Yanbian cattle and Yanhuang cattle. Comparing the same parts of the two breeds, it was found that there was no significant difference in alpha diversity, but significant differences in beta diversity. In addition, microbiota with significant differences in the relative abundance of the reproductive tract were found. These findings lay a foundation for a comprehensive understanding of the structure of the genital tract microbiota of cows and its regulatory mechanisms.

2.
Front Vet Sci ; 11: 1418091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176400

RESUMEN

Introduction: Postpartum endometritis is a prevalent reproductive disorder in bovines, leading to a prolonged open period, infertility, and other complications. While Lactobacillus strains can mitigate these conditions by reducing uterine inflammation, their effectiveness is limited due to a lack of direct anti microbial action and extended treatment duration. This study aimed to construct a recombinant Lactobacillus johnsonii strain expressing bovine Granulocyte-macrophage colony-stimulating factor (GM-CSF) to evaluate its potential in reducing postpartum uterine inflammation. Methods: The recombinant Lactobacillus johnsonii strain was engineered to express bovine GM-CSF and administered to pregnant mice via vaginal perfusion. Postpartum endometritis was induced using E. coli infection, and the protective effects of the engineered strain were assessed. Inflammatory markers (IL-6, IL-1ß, TNF-α), myeloperoxidase (MPO) activity, and nitric oxide (NO) concentration were measured. Histological examination was performed to evaluate uterine morphology and pathological damage. Results: The recombinant L. johnsonii strain expressing GM-CSF significantly reduced inflammation levels induced by E. coli infection in the uterus. This reduction was evidenced by decreased expression of IL-6, IL-1ß, TNF-α, as well as reduced MPO activity and NO concentration. Histological examination revealed improved uterine morphology and reduced pathological damage in mice treated with the recombinant GM-CSF strain. Crucially, the recombinant strain also exerts beneficial effects on bovine endometritis by reducing levels of inflammatory cytokines, suggesting a beneficial effect on clinical bovine endometritis. Conclusion: The recombinant Lactobacillus johnsonii expressing GM-CSF demonstrated protective effects against postpartum endometritis in bovines by reducing inflammatory cytokines. The findings indicate the potential clinical application of this engineered strain in preventing postpartum uterine inflammation, offering a novel and effective protective option for related disorders and improving bovine reproductive efficiency.

3.
J Neurosurg Case Lessons ; 8(5)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074395

RESUMEN

BACKGROUND: Candida parapsilosis has been implicated in central nervous system (CNS) infections (i.e., meningitis or ventriculitis) but has not been previously reported to cause intracerebral abscesses. CNS infections secondary to C. parapsilosis are notoriously difficult to treat due to the poor CNS penetration of amphotericin B. Historically, intraventricular amphotericin B has been used to treat C. parapsilosis ventriculitis. OBSERVATIONS: A 15-year-old female with no comorbidities presented with nonresolving headaches, photophobia, fevers, and meningism. Computed tomography (CT) of the brain revealed a right frontal abscess. After multiple drainage surgeries, subsequent CT scans showed reaccumulation of her abscess. C. parapsilosis was cultured, and the patient was then taken to the operating room where an external ventricular drain catheter was successfully placed within the abscess cavity. Pus was repeatedly aspirated, followed by the instillation of intralesional amphotericin B twice a day for 2 weeks. The patient's clinical condition improved substantially with complete resolution of symptoms, improvement of infective markers, and resolution of radiological features of the abscess. Follow-up of the patient revealed the absence of symptoms and image characteristics of abscess on CT 3 months posttreatment. LESSONS: Intralesional amphotericin B is a novel but effective treatment of C. parapsilosis intracerebral abscess, an organism not previously described as a cause of intracerebral abscesses. https://thejns.org/doi/10.3171/CASE2484.

4.
Adv Healthc Mater ; : e2400591, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861753

RESUMEN

Calcium overload can lead to tumor cell death. However, because of the powerful calcium channel excretory system within tumor cells, simplistic calcium overloads do not allow for an effective antitumor therapy. Hence, the nanoparticles are created with polyethylene glycol (PEG) donor-modified calcium phosphate (CaP)-coated, manganese-doped hollow mesopores Prussian blue (MMPB) encapsulating glucose oxidase (GOx), called GOx@MMPB@CaP-PEG (GMCP). GMCP with a three-mode enhancement of intratumor reactive oxygen species (ROS) levels is designed to increase the efficiency of the intracellular calcium overload in tumor cells to enhance its anticancer efficacy. The released exogenous Ca2+ and the production of cytotoxic ROS resulting from the perfect circulation of the three-mode ROS outbreak generation that Fenton/Fenton-like reaction and consumption of glutathione from Fe2+/Fe3+and Mn2+/Mn3+ circle, and amelioration of hypoxia from MMPB-guided and GOx-mediated starvation therapy. Photothermal efficacy-induced heat generation owing to MMPB accelerates the above reactions. Furthermore, abundant ROS contribute to damage to mitochondria, and the calcium channels of efflux Ca2+ are inhibited, resulting in a calcium overload. Calcium overload further increases ROS levels and promotes apoptosis of tumor cells to achieve excellent therapy.

5.
Sci Bull (Beijing) ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38945748

RESUMEN

During the past 3000 years, cattle on the Qinghai-Xizang Plateau have developed adaptive phenotypes under the selective pressure of hypoxia, ultraviolet (UV) radiation, and extreme cold. The genetic mechanism underlying this rapid adaptation is not yet well understood. Here, we present whole-genome resequencing data for 258 cattle from 32 cattle breeds/populations, including 89 Tibetan cattle representing eight populations distributed at altitudes ranging from 3400 m to 4300 m. Our genomic analysis revealed that Tibetan cattle exhibited a continuous phylogeographic cline from the East Asian taurine to the South Asian indicine ancestries. We found that recently selected genes in Tibetan cattle were related to body size (HMGA2 and NCAPG) and energy expenditure (DUOXA2). We identified signals of sympatric introgression from yak into Tibetan cattle at different altitudes, covering 0.64%-3.26% of their genomes, which included introgressed genes responsible for hypoxia response (EGLN1), cold adaptation (LRP11), DNA damage repair (LATS1), and UV radiation resistance (GNPAT). We observed that introgressed yak alleles were associated with noncoding variants, including those in present EGLN1. In Tibetan cattle, three yak introgressed SNPs in the EGLN1 promoter region reduced the expression of EGLN1, suggesting that these genomic variants enhance hypoxia tolerance. Taken together, our results indicated complex adaptation processes in Tibetan cattle, where recently selected genes and introgressed yak alleles jointly facilitated rapid adaptation to high-altitude environments.

6.
Biosens Bioelectron ; 261: 116467, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901392

RESUMEN

Light therapy is an effective approach for the treatment of a variety of challenging dermatological conditions. In contrast to existing methods involving high doses and large areas of illumination, alternative strategies based on wearable designs that utilize a low light dose over an extended period provide a precise and convenient treatment. In this study, we present a battery-free, skin-integrated optoelectronic patch that incorporates a coil-powered circuit, an array of microscale violet and red light emitting diodes (LEDs), and polymer microneedles (MNs) loaded with 5-aminolevulinic acid (5-ALA). These polymer MNs, based on the biodegradable composite materials of polyvinyl alcohol (PVA) and hyaluronic acid (HA), serve as light waveguides for optical access and a medium for drug release into deeper skin layers. Unlike conventional clinical photomedical appliances with a rigid and fixed light source, this flexible design allows for a conformable light source that can be applied directly to the skin. In animal models with bacterial-infected wounds, the experimental group with the combination treatment of metronomic photodynamic and light therapies reduced 2.48 log10 CFU mL-1 in bactericidal level compared to the control group, indicating an effective anti-infective response. Furthermore, post-treatment analysis revealed the activation of proregenerative genes in monocyte and macrophage cell populations, suggesting enhanced tissue regeneration, neovascularization, and dermal recovery. Overall, this optoelectronic patch design broadens the scope for targeting deep skin lesions, and provides an alternative with the functionality of standard clinical light therapy methods.


Asunto(s)
Fotoquimioterapia , Animales , Fotoquimioterapia/métodos , Ratones , Humanos , Alcohol Polivinílico/química , Ácido Aminolevulínico/uso terapéutico , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/química , Ácido Aminolevulínico/administración & dosificación , Técnicas Biosensibles , Ácido Hialurónico/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Infección de Heridas/terapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Piel/efectos de la radiación , Piel/microbiología , Diseño de Equipo
7.
Anal Chem ; 96(21): 8665-8673, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722711

RESUMEN

Prostate-specific antigen (PSA) is a key marker for a prostate cancer diagnosis. The low sensitivity of traditional lateral flow immunoassay (LFIA) methods makes them unsuitable for point-of-care testing. Herein, we designed a nanozyme by in situ growth of Prussian blue (PB) within the pores of dendritic mesoporous silica (DMSN). The PB was forcibly dispersed into the pores of DMSN, leading to an increase in exposed active sites. Consequently, the atom utilization is enhanced, resulting in superior peroxidase (POD)-like activity compared to that of cubic PB. Antibody-modified DMSN@PB nanozymes serve as immunological probes in an enzymatic-enhanced colorimetric and photothermal dual-signal LFIA for PSA detection. After systematic optimization, the LFIA based on DMSN@PB successfully achieves a 4-fold amplification of the colorimetric signal within 7 min through catalytic oxidation of the chromogenic substrate by POD-like activity. Moreover, DMSN@PB exhibits an excellent photothermal conversion ability under 808 nm laser irradiation. Accordingly, photothermal signals are introduced to improve the anti-interference ability and sensitivity of LFIA, exhibiting a wide linear range (1-40 ng mL-1) and a low PSA detection limit (0.202 ng mL-1), which satisfies the early detection level of prostate cancer. This research provides a more accurate and reliable visualization analysis methodology for the early diagnosis of prostate cancer.


Asunto(s)
Colorimetría , Ferrocianuros , Inmunoensayo , Nanocompuestos , Antígeno Prostático Específico , Humanos , Masculino , Ferrocianuros/química , Inmunoensayo/métodos , Límite de Detección , Nanocompuestos/química , Porosidad , Antígeno Prostático Específico/análisis , Neoplasias de la Próstata/diagnóstico , Dióxido de Silicio/química
8.
Small Methods ; : e2400480, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38803307

RESUMEN

Enhancing the output performance of triboelectric nanogenerators (TENGs) is essential for increasing their application in smart devices. Oxygen-vacancy-rich BiO2-x nanosheets (BiO2-x NSs) are advanced-engineered nanomaterials with excellent piezoelectric properties. Herein, a stretchable unsymmetrical BiO2-x NSs deposited-hydrogel made of polyacrylamide (PAM) as a multimodal TENG is rationally fabricated, and the performance of TENG can be tailored by controlling the BiO2-x NSs deposition amount and spatial distribution. The alteration of resistance caused by the Poisson effect of PAM/BiO2-x composite hydrogel (H-BiO2-x) can be used as a piezoresistive sensor, and the piezoelectricity of BiO2-x NSs can effectively enhance the density of transfer charge, thus improving the output performance of the H-BiO2-x-based TENG. In addition, the chemical cross-linking between the BiO2-x NSs and the PAM polymer chain allows the hydrogel electrode to have a higher tensile capacity (867%). Used for biomechanical motion signal detection, the sensors made of H-BiO2-x have high sensitivity (gauge factor = 6.93) and can discriminate a range of forces (0.1-5.0 N) at low frequencies (0.5-2.0 Hz). Finally, the prepared TENG can collect biological energy and convert it into electricity. Consequently, the improved TENG shows a good application prospect as multimodal biomechanical sensors by combining piezoresistive, piezoelectric, and triboelectric effects.

9.
Cryobiology ; 115: 104892, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593909

RESUMEN

Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.


Asunto(s)
Apoptosis , Criopreservación , Fertilización In Vitro , Congelación , Estrés Oxidativo , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Bovinos , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides/fisiología , Fertilización In Vitro/veterinaria , Congelación/efectos adversos , Membrana Celular , Supervivencia Celular , Acrosoma
10.
Nano Lett ; 24(17): 5351-5360, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634773

RESUMEN

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.


Asunto(s)
Hidrogeles , Hidrogeles/química , Humanos , Dispositivos Electrónicos Vestibles , Congelación , Enlace de Hidrógeno , Electricidad Estática , Conductividad Eléctrica
11.
Asian J Androl ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657119

RESUMEN

Tumor metabolic reprogramming is a hallmark of cancer development, and targeting metabolic vulnerabilities has been proven to be an effective approach for castration-resistant prostate cancer (CRPC) treatment. Nevertheless, treatment failure inevitably occurs, largely due to cellular heterogeneity, which cannot be deciphered by traditional bulk sequencing techniques. By employing computational pipelines for single-cell RNA sequencing, we demonstrated that epithelial cells within the prostate are more metabolically active and plastic than stromal cells. Moreover, we identified that neuroendocrine (NE) cells tend to have high metabolic rates, which might explain the high demand for nutrients and energy exhibited by neuroendocrine prostate cancer (NEPC), one of the most lethal variants of prostate cancer (PCa). Additionally, we demonstrated through computational and experimental approaches that variation in mitochondrial activity is the greatest contributor to metabolic heterogeneity among both tumor cells and nontumor cells. These results establish a detailed metabolic landscape of PCa, highlight a potential mechanism of disease progression, and emphasize the importance of future studies on tumor heterogeneity and the tumor microenvironment from a metabolic perspective.

12.
Small Methods ; : e2400125, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461544

RESUMEN

Nanoformulations with endogenous/exogenous stimulus-responsive characteristics show great potential in tumor cell elimination with minimal adverse effects and high precision. Herein, an intelligent nanotheranostic platform (denoted as TPZ@Cu-SnS2-x /PLL) for tumor microenvironment (TME) and near-infrared light (NIR) activated tumor-specific therapy is constructed. Copper (Cu) doping and the resulting sulfur vacancies can not only improve the response range of visible light but also improve the separation efficiency of photogenerated carriers and increase the carrier density, resulting in the ideal photothermal and photodynamic performance. Density functional theory calculations revealed that the introduction of Cu and resulting sulfur vacancies can induce electron redistribution, achieving favorable photogenerated electrons. After entering cells through endocytosis, the TPZ@Cu-SnS2-x /PLL nanocomposites show the pH responsivity property for the release of the TPZ selectively within the acidic TME, and the released Cu2+ can first interact with local glutathione (GSH) to deplete GSH with the production of Cu+ . Subsequently, the Cu+ -mediated Fenton-like reaction can decompose local hydrogen peroxide into hydroxyl radicals, which can also be promoted by hyperthermia derived from the photothermal effect for tumor cell apoptosis. The integration of photoacoustic/computed tomography imaging-guided NIR phototherapy, TPZ-induced chemotherapy, and GSH-elimination/hyperthermia enhanced chemodynamic therapy results in synergistic therapeutic outcomes without obvious systemic toxicity in vivo.

13.
Luminescence ; 39(3): e4721, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501275

RESUMEN

Luminescent bacteria-based biosensors are widely used for fast and sensitive monitoring of food safety, water quality, and other environmental pollutions. Recent advancements in biomedical engineering technology have led to improved portability, integration, and intelligence of these biotoxicity assays. Moreover, genetic engineering has played a significant role in the development of recombinant luminescent bacterial biosensors, enhancing both detection accuracy and sensitivity. This review provides an overview of recent advances in the development and applications of novel luminescent bacteria-based biosensors, and future perspectives and challenges in the cutting-edge research, market translation, and practical applications of luminescent bacterial biosensing are discussed.


Asunto(s)
Bacterias , Técnicas Biosensibles , Bacterias/genética , Luminiscencia
14.
BMC Ophthalmol ; 24(1): 82, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388341

RESUMEN

BACKGROUND: Branch retinal vein occlusion (BRVO) is a common retinal vascular disease leading to severe vision loss and blindness. This study aimed to investigate and reveal the pathophysiological mechanisms underlying macular edema (ME) recurrence in patients with BRVO through a proteomic approach. METHODS: We detected proteins in the aqueous humor of 14 untreated, four refractory, and four post-operative patients with BRVO-ME and 12 age-matched cataract controls using four-dimensional label-free proteomic and bioinformatics analyses. RESULTS: In total, 84 proteins exhibited significant differential expression between the BRVO and control samples (fold change [FC] ≥ 1.2 and adjusted p-value < 0.05). Compared to the control group, 43 and 41 proteins were upregulated and downregulated, respectively, in the BRVO group. These proteins were involved in cell adhesion, visual perception, retina homeostasis, and platelet activation. Several significantly enriched signaling pathways included complement and coagulation cascades and platelet activation. In the protein-protein interaction networks generated using the search tool for retrieval of interacting genes (STRING), the fibrinogen alpha chain and fibrinogen beta chain constituted a tightly connected cluster. Many common protein expression trends, such as the fibrinogen alpha chain and fibrinogen beta chain, were observed in both the recurrent and refractory groups. Differentially expressed proteins in the two groups were involved in complement activation, acute-phase response, platelet activation, and platelet aggregation. Important signaling pathways include the complement and coagulation cascades, and platelet activation. Protein-protein interaction analysis suggested that the fibrinogen alpha chain and fibrinogen beta chain constituted a tightly connected cluster. The expression of some differentially expressed proteins shared by the BRVO and the recurrent and refractory groups was reversed in the post-operative group. CONCLUSIONS: Our study is the first to analyze the proteomics of recurrent, refractory, and post-operative groups treated for BRVO-ME, and may potentially provide novel therapeutic interventions for the recurrence of ME.


Asunto(s)
Edema Macular , Oclusión de la Vena Retiniana , Humanos , Oclusión de la Vena Retiniana/tratamiento farmacológico , Edema Macular/tratamiento farmacológico , Proteómica/métodos , Fibrinógeno/uso terapéutico
15.
Int J Biol Macromol ; 262(Pt 2): 130039, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354917

RESUMEN

There is mounting evidence that the uterine microbiota has an important role in the pathogenesis of endometritis, with invasion of pathogenic bacteria being a main cause of uterine microbial imbalance. However, mechanisms of uterine microbiota resistance to pathogen invasion remain unclear. In this study, an intrauterine infusion of Staphylococcus aureus was used as a bovine endometritis model; it significantly increased abundance of pathogenic bacteria (Streptococcus, Helccoccus, Fusobacterium, and Escherichia-Shigella) and significantly decreased abundance of probiotics (Allstipes, Bacteroides, Phascolarctobacterium, Romboutsia, and Prevotella). In addition, the metabolite aloe-emodin was positively correlated with Prevotella and based on combined analyses of omics and probiotics, the presence of its metabolite aloe-emodin in the uterus at least partially resisted Staphylococcus aureus invasion. Therefore, Aloe-emodin has potential for regulating microbial structure and preventing endometritis.


Asunto(s)
Emodina , Endometritis , Infecciones Estafilocócicas , Femenino , Humanos , Animales , Bovinos , Endometritis/microbiología , Endometritis/patología , Staphylococcus aureus/metabolismo , Útero/patología , Bacterias , Infecciones Estafilocócicas/patología
16.
Int Ophthalmol ; 44(1): 70, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349418

RESUMEN

PURPOSE: This study aimed to investigate the incidence of meibomian gland dysfunction (MGD) in postmenopausal women with primary acquired nasolacrimal duct obstruction (PANDO) and enables ophthalmologists to pay attention to ocular surface damage before surgery. METHODS: 165 postmenopausal women with PANDO and 115 postmenopausal women with a normal lacrimal drainage system were enrolled in this prospective study. Based on the results of lacrimal duct irrigation and age, the participants were further subdivided. The incidence of different severities of MGD in different groups was calculated and analyzed by the chi-squared test. RESULTS: The incidence of MGD in the PANDO group was 81.21%, and in the control group, it was 46.96%, which was significantly higher in the presence of PANDO (p < 0.001). The incidence of severe MGD in the complete and incomplete PANDO groups was higher than that in the control group (all p < 0.05), and no significant differences were observed between the complete and incomplete PANDO groups. The incidence of moderate MGD was significantly higher in the complete PANDO group than in the control group (p < 0.001). When age was considered an independent variable, the results revealed a significant value for patients aged < 70 years (p < 0.001). CONCLUSIONS: Our study revealed a prodominantly high incidence of MGD in postmenopausal women with PANDO, especially in a complete PANDO or aged < 70 years. Ophthalmologists need to pay close attention to MGD in postmenopausal women with PANDO.


Asunto(s)
Obstrucción del Conducto Lagrimal , Disfunción de la Glándula de Meibomio , Conducto Nasolagrimal , Humanos , Femenino , Incidencia , Obstrucción del Conducto Lagrimal/diagnóstico , Obstrucción del Conducto Lagrimal/epidemiología , Posmenopausia , Estudios Prospectivos , Párpados
17.
Nano Lett ; 24(6): 2071-2080, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305186

RESUMEN

Ferroptosis is a novel type of nonapoptotic programmed cell death involving the accumulation of lipid peroxidation (LPO) to a lethal threshold. Herein, we propose tunable zeolitic imidazolate framework (ZIFs)-engineered biodegradable nanozymes for ferroptosis mediated by both reactive oxygen species (ROS) and nitrogen species (RNS). l-Arginine is utilized as an exogenous nitric oxide donor and loaded into hollow ZIFs@MnO2 artificial nanozymes, which are formed by etching ZIFs with potassium permanganate and simultaneously generating a MnO2 shell in situ. The constructed nanozymes with multienzyme-like activities including peroxidase, oxidase, and catalase can release satisfactory ROS and RNS through a cascade reaction, consequently promoting the accumulation of LPO. Furthermore, it can improve the efficiency of ferroptosis through a three-step strategy of glutathione (GSH) depletion; that is, the outer MnO2 layer consumes GSH under slightly acidic conditions and RNS downregulates SLC7A11 and glutathione reductase, thus directly inhibiting GSH biosynthesis and indirectly preventing GSH regeneration.


Asunto(s)
Ferroptosis , Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Compuestos de Manganeso/farmacología , Óxidos , Estrés Oxidativo , Glutatión
18.
Angew Chem Int Ed Engl ; 63(9): e202317218, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38212251

RESUMEN

With the rapid development of external minimally invasive or noninvasive therapeutic modalities, ultrasound-based sonodynamic therapy (SDT) is a new alternative for treating deep tumors. However, inadequate sonosensitizer efficiency and poor biosecurity limit clinical applications. In this study, we prepared an oxygen-vacancy-engineered W18 O49-x nanobrush with a band gap of 2.79 eV for highly efficient SDT using a simple solvothermal method. The suitable band structures of the W18 O49-x nanobrush endows it with the potential to simultaneously produce singlet oxygen (1 O2 ), superoxide anions (⋅O2 - ), and hydroxyl radicals (⋅OH) under ultrasound irradiation. Additionally, abundant oxygen vacancies that serve as further charge traps that inhibit electron-hole recombination are incidentally introduced through one-step thermal reduction. Collectively, the in vitro and in vivo results demonstrate that the oxygen-vacancy-engineered W18 O49-x nanobrush delivers highly efficient reactive oxygen species (ROS) for SDT in a very biosafe manner. Overall, this study provides a new avenue for discovering and designing inorganic nanosonosensitizers with enhanced therapeutic efficiencies for use in SDT.


Asunto(s)
Neoplasias , Isótopos de Oxígeno , Terapia por Ultrasonido , Humanos , Terapia por Ultrasonido/métodos , Neoplasias/terapia , Especies Reactivas de Oxígeno , Oxígeno , Superóxidos , Línea Celular Tumoral
19.
Adv Mater ; 36(10): e2211210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36840985

RESUMEN

Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.


Asunto(s)
Nanoestructuras , Catálisis , Hidrolasas
20.
Adv Mater ; 36(2): e2307115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37732568

RESUMEN

Taking the significance of the special microenvironment for tumor cell survival into account, disrupting tumor redox homeostasis is highly prospective for improving therapeutic efficacy. Herein, a multifunctional 2D vanadium-based MXene nanoplatform, V4 C3 /atovaquone@bovine albumin (V4 C3 /ATO@BSA, abbreviated as VAB) has been elaborately constructed for ATO-enhanced nanozyme catalytic/photothermal therapy. The redox homeostasis within the tumor cells is eventually disrupted, showing a remarkable anti-tumor effect. The VAB nanoplatform with mixed vanadium valence states can induce a cascade of catalyzed reactions in the tumor microenvironment, generating plenty of reactive oxygen species (ROS) with effective glutathione consumption to amplify oxidative stress. Meanwhile, the stable and strong photothermal effect of VAB under near-infrared irradiation not only causes the necrosis of tumor cells, but also improves its peroxidase-like activity. In addition, the release of ATO can effectively alleviate endogenous oxygen consumption to limit triphosadenine formation and inhibit mitochondrial respiration. As a result, the expression of heat shock proteins is effectively suppressed to overcome thermoresistance and the production of ROS can be further promoted due to mitochondrial injury. Moreover, VAB also presents high photoacoustic and photothermal imaging performances. In brief, the multifunctional nanoplatform can provide ATO-enhanced nanozyme catalytic/photothermal therapy with broadening the biomedical applications of vanadium-based MXene.


Asunto(s)
Neoplasias , Nitritos , Terapia Fototérmica , Elementos de Transición , Animales , Bovinos , Vanadio , Estudios Prospectivos , Especies Reactivas de Oxígeno , Homeostasis , Oxidación-Reducción , Neoplasias/terapia , Catálisis , Microambiente Tumoral , Línea Celular Tumoral , Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA