Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Genet ; 20(4): e1011232, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669270

RESUMEN

Animals often grow and develop in unpredictable environments where factors like food availability, temperature, and oxygen levels can fluctuate dramatically. To ensure proper sexual maturation into adulthood, juvenile animals need to adapt their growth and developmental rates to these fluctuating environmental conditions. Failure to do so can result in impaired maturation and incorrect body size. Here we describe a mechanism by which Drosophila larvae adapt their development in low oxygen (hypoxia). During normal development, larvae grow and increase in mass until they reach critical weight (CW), after which point a neuroendocrine circuit triggers the production of the steroid hormone ecdysone from the prothoracic gland (PG), which promotes maturation to the pupal stage. However, when raised in hypoxia (5% oxygen), larvae slow their growth and delay their maturation to the pupal stage. We find that, although hypoxia delays the attainment of CW, the maturation delay occurs mainly because of hypoxia acting late in development to suppress ecdysone production. This suppression operates through a distinct mechanism from nutrient deprivation, occurs independently of HIF-1 alpha and does not involve dilp8 or modulation of Ptth, the main neuropeptide that initiates ecdysone production in the PG. Instead, we find that hypoxia lowers the expression of the EGF ligand, spitz, and that the delay in maturation occurs due to reduced EGFR/ERK signaling in the PG. Our study sheds light on how animals can adjust their development rate in response to changing oxygen levels in their environment. Given that hypoxia is a feature of both normal physiology and many diseases, our findings have important implications for understanding how low oxygen levels may impact animal development in both normal and pathological situations.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ecdisona , Factor de Crecimiento Epidérmico , Larva , Transducción de Señal , Animales , Ecdisona/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hipoxia/metabolismo , Regulación del Desarrollo de la Expresión Génica , Receptores ErbB/metabolismo , Receptores ErbB/genética , Oxígeno/metabolismo , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Pupa/genética
2.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200850

RESUMEN

When exposed to low oxygen or hypoxia, animals must alter their metabolism and physiology to ensure proper cell-, tissue-, and whole-body level adaptations to their hypoxic environment. These alterations often involve changes in gene expression. While extensive work has emphasized the importance of the HIF-1 alpha transcription factor on controlling hypoxia gene expression, less is known about other transcriptional mechanisms. We previously identified the transcription factor FOXO as a regulator of hypoxia tolerance in Drosophila larvae and adults. Here, we use an RNA-sequencing approach to identify FOXO-dependent changes in gene expression that are associated with these tolerance effects. We found that hypoxia altered the expression of over 2,000 genes and that ∼40% of these gene expression changes required FOXO. We discovered that hypoxia exposure led to a FOXO-dependent increase in genes involved in cell signaling, such as kinases, GTPase regulators, and regulators of the Hippo/Yorkie pathway. Among these, we identified homeodomain-interacting protein kinase as being required for hypoxia survival. We also found that hypoxia suppresses the expression of genes involved in ribosome synthesis and egg production, and we showed that hypoxia suppresses tRNA synthesis and mRNA translation and reduces female fecundity. Among the downregulated genes, we discovered that FOXO was required for the suppression of many ribosomal protein genes and genes involved in oxidative phosphorylation, pointing to a role for FOXO in limiting energetically costly processes such as protein synthesis and mitochondrial activity upon hypoxic stress. This work uncovers a widespread role for FOXO in mediating hypoxia changes in gene expression.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Oxígeno , Factores de Transcripción/genética , Hipoxia/genética , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Expresión Génica , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA