Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Pollut ; 362: 124981, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293655

RESUMEN

The migration of heavy metals into aquatic ecosystems is a concern for the safety of aquatic organisms and human health. However, the migration of heavy metals from habitats to the food chain in freshwater ecosystems requires extensive exploration. We extensively investigated the levels of heavy metals in multiple media of freshwater ecosystems and explored their migration from freshwater habitats to the food chain. The results showed that the concentrations of Cr, Cu, Cd, Zn, Sb, and Pb in sediments, Cr in mollusks, and Cd in clams exceeded their standard limit values. Feeding habits, species, and body length considerably affected heavy metal levels in fish, whereas regional differences, body length, and weight considerably affected heavy metal levels in mollusks. The bioconcentration capacity (improved biotawater (sediment) accumulation factors) of the muscles was higher than that of the gills and visceral mass. Mollusks were strongly enriched in Cu, Cd, Zn, and Mn in their habitats, whereas fish were more favourable for the accumulation of Cu, Zn, and Cr. Heavy metals in sediments pose a higher risk to aquatic organisms than those in the overlying water. Trophic level (TL) (δ15N) considerably diluted levels of most metals, whereas Cu and Zn levels increased along the organic matter pathway (δ13C) in the entire aquatic food chain. The levels of typical pollutants, such as Cu, Zn, As, Cd, Pb, and Cr changed considerably along the organic matter pathway in mollusks. The levels of heavy metals in fish were not affected by TL or organic matter pathway, except for Cu. The potential risk of consuming aquatic organisms from Poyang Lake was ranked as clams > snails > fish for adults and children and As in aquatic organisms was the primary contributor to health risk.

2.
Huan Jing Ke Xue ; 45(8): 4553-4564, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168675

RESUMEN

Dissolved organic matter (DOM) plays an important role in indicating the pollution of the water environment, and sediment is the main source of endogenous pollution of the water environment. Research on the spectral characteristics of DOM in sediments was important for the interpretation of water environment pollution. In this study, UV-visible absorption spectroscopy and three-dimensional fluorescence spectroscopy combined with the parallel factor analysis (PARAFAC) were used to analyze the fluorescent components, sources, and influencing factors of DOM in sediments from the Yuanhe River Basin. The results showed that the average of ω(TN), ω(TP), and ω(OM) in sediments from the Yuanhe River Basin were 0.52, 0.66, and 21.22 g·kg-1, respectively. The concentrations of total nitrogen and total phosphorus increased along the flow direction. In addition, the sediment DOM from the Yuanhe River Basin mainly originated from terrestrial sources. The chromophoric DOM concentration and aromaticity of DOM from the downstream reaches were significantly higher than those from the upstream and midstream reaches. Based on PARAFAC, four fluorescent components of DOM in sediments from the Yuanhe River Basin were identified, including three humus-like components (C1, C3, and C4) and one protein-like component (C2). The sediment DOM was dominated by humus-like materials. Moreover, the fluorescent intensity of the fluorescent components was higher in the downstream reaches. Redundancy analysis revealed that the physicochemical properties of sediments in the mainstream and downstream reaches played a more significant role in the spectral properties of DOM. Phosphorus pollution and the terrestrial humus-like substance of sediment DOM were homologous. These results indicated that the spectral properties of DOM were the indicator of water environmental pollution in the region with strong anthropogenic influence.

3.
Huan Jing Ke Xue ; 45(7): 4251-4265, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022971

RESUMEN

To clarify the regulating effect of vegetation and soil factors on microbial communities in the alpine steppe under degradation on the Qinghai-Xizang Plateau, the alpine steppe in the Sanjiangyuan area of the Qinghai-Tibet Plateau was chosen. We analyzed the differences in vegetation and soil factors in different stages of degradation (non-degradation, moderate degradation, and severe degradation) and detected the variations in microbial community characteristics in the alpine steppe under different degradation stages using high-throughput sequencing technology. Eventually, redundancy analysis (RDA) and multiple regression matrixes (MRM) based on the similarity or dissimilarity matrix were used to identify key environmental factors regulating microbial (bacterial and fungal) community changes under degradation. The results showed that the degradation of the alpine steppe significantly changed the community coverage, height, biomass, and important value of graminae; significantly reduced the contents of soil organic matter, total nitrogen, total phosphorus, and silt; and increased the soil bulk density and sand content. Degradation did not change the composition of bacteria and fungi, but their composition proportions changed and also resulted in the loss of microbial richness (Chao1 index and Richness index) but did not significantly change the microbial diversity (Shannon index). With the occurrence of degradation, the vegetation characteristics, soil physicochemical properties, and microbial diversity showed a consistent change trend. Combined with the characteristics of the network topology changes (the number of nodes and clustering coefficient significantly decreased), it was found that degradation of the alpine steppe led to the decline of interspecies interactions, decentralization of network, and homogenization of microorganisms, but the cooperation relations among the species were maintained (positive correlation connections accounted for more than 90% in all degradation stages). Under the alpine steppe degradation, the vegetation-soil interaction had the greatest effect on soil bacterial community, whereas soil physicochemical properties had the greatest influence on soil fungal community. Specifically, vegetation community height, biomass, and soil bulk density were the mutual factors regulating soil microorganisms, whereas the vegetation Simpson index, important value of graminae, soil total phosphorus, total potassium, and silt content were the unique factors affecting the soil bacterial community, and soil pH and total nitrogen content were the particular factors affecting the soil fungal community.


Asunto(s)
Pradera , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Fósforo/análisis , China , Nitrógeno/análisis , Hongos/clasificación , Hongos/aislamiento & purificación , Tibet , Ecosistema
4.
Sci Total Environ ; 946: 174500, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971245

RESUMEN

Paddy drainage is the critical period for rice grain to accumulate cadmium (Cd), however, its roles on spatial heterogeneity of grain Cd within individual fields are still unknown. Herein, field plot experiments were conducted to study the spatial variations of rice Cd under continuous and intermittent (drainage at the tillering or grain-filling or both stages) flooding conditions. The spatial heterogeneity of soil moisture and key factors involved in Cd mobilization during drainages were further investigated to explain grain Cd variation. Rice grain Cd levels under continuous flooding ranged from 0.16 to 0.22 mg kg-1 among nine sampling sites within an individual field. Tillering drainage slightly increased grain Cd levels (0.19-0.31 mg kg-1) with little change in spatial variation. However, grain-filling drainage greatly increased grain Cd range to 0.33-0.95 mg kg-1, with a huge spatial variation observed among replicated sites. During two drainage periods, soil moisture decreased variously in different monitoring sites; greater variation (mean values ranged from 0.14 to 0.27 m3 m-3) was observed during grain-filling drainage. Accordingly, 2.9-3.3-fold variation in soil Eh and 0.55-0.67-unit variation in soil pH were observed among those sites. In the soil with low moisture, ferrous fractions such as ferrous sulfide (FeS) were prone to be oxidized to ferric fractions; meanwhile, the followed generation of hydroxyl radicals involved in Cd remobilization was enhanced. Consequently, soil dissolved Cd changed from 2.97 to 8.92 µg L-1 among different sampling sites during grain-filling drainage; thus, large variation was observed in grain Cd levels. The findings suggest that grain-filling drainage is the main process controlling spatial variation of grain Cd, which should be paid more attention in paddy Cd evaluation.


Asunto(s)
Cadmio , Monitoreo del Ambiente , Oryza , Contaminantes del Suelo , Suelo , Cadmio/análisis , Oryza/química , Contaminantes del Suelo/análisis , Suelo/química , Agricultura/métodos , Grano Comestible/química
5.
Opt Lett ; 49(10): 2821-2824, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748170

RESUMEN

Waveguide Bragg grating (WBG) blood glucose sensing, as a biological sensing technology with broad application prospects, plays an important role in the fields of health management and medical treatment. In this work, a polymer-based cascaded WBG is applied to glucose detection. We investigated photonic devices with two different grating structures cascaded-a crossed grating and a bilateral grating-and analyzed the effects of the crossed grating period, bilateral grating period, and number of grating periods on the sensing performance of the glucose sensor. Finally, the spectral reflectance characteristics, response time, and sensing specificity of the cascaded WBG were evaluated. The experimental results showed that the glucose sensor has a sensitivity of 175 nm/RIU in a glucose concentration range of 0-2 mg/ml and has the advantages of high integration, a narrow bandwidth, and low cost.


Asunto(s)
Glucemia , Polímeros , Polímeros/química , Glucemia/análisis , Técnicas Biosensibles/instrumentación
6.
Environ Pollut ; 348: 123867, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556151

RESUMEN

A comprehensive understanding of the characteristics of biochar released-dissolved organic matter (BDOM) derived from an invasive plant and its impact on the binding behavior of pharmaceuticals is essential for the application of biochar, yet has received less attention. In this study, the binding behavior of BDOM pyrolyzed at 300-700 °C with sulfathiazole, acetaminophen, chloramphenicol (CAP), and carbamazepine (CMZ) was investigated based on a multi-analytical approach. Generally, the pyrolysis temperature exhibited a more significant impact on the spectral properties of BDOM and pharmaceutical binding behavior than those of the molecular weight. With increased pyrolysis temperature, the dissolved organic carbon decreased while the proportion of the protein-like substance increased. The highest binding capacity towards the drugs was observed for the BDOM pyrolyzed at 500 °C with the molecular weight larger than 0.3 kDa. Moreover, the protein-like substance exhibited higher susceptive and released preferentially during the dialysis process and also showed more sensitivity and bound precedingly with the pharmaceuticals. The active binding points were the aliphatic C-OH, amide II N-H, carboxyl CO, and phenolic-OH on the tryptophan-like substance. Furthermore, the binding affinity of the BDOM pyrolyzed at 500 °C was relatively high with the stability constant (logKM) of 4.51 ± 0.52.


Asunto(s)
Materia Orgánica Disuelta , Pirólisis , Temperatura , Peso Molecular , Carbón Orgánico/química , Sustancias Húmicas/análisis , Proteínas , Preparaciones Farmacéuticas
7.
Int J Radiat Oncol Biol Phys ; 118(5): 1347-1370, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092257

RESUMEN

Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapéutico , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Enzimas Desubicuitinizantes/metabolismo , Tolerancia a Radiación
8.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081280

RESUMEN

The magnetic reconnection process relevant to that at the magnetotail is one of the research contents of the Space Plasma Environment Research Facility, which is under construction at the Harbin Institute of Technology in China. Two magnetic mirror sub-coils placed symmetrically in the vertical direction and connected in series cooperate with a dipole coil to generate a magnetic field environment similar to the Earth's magnetotail. A capacitor-based pulsed power supply (PPS) system with a modular design is developed to excite two magnetic mirror sub-coils to generate a magnetic field with a magnetic flux density of not less than 200 G at the center of the two sub-coils. The PPS should deliver a pulsed current with a peak of more than 8 kA, and the duration of the current not be less than 95% of the peak over 5 ms to two magnetic mirror sub-coils when the charging voltage is not less than 20 kV. In addition, the duration from the peak to 10% of the peak is not more than 130 ms. The detailed design of the PPS is discussed in this paper, and a test method is designed to reduce the risk of damage to the wires and the connection between the wires and the coaxial cables of the PPS when the PPS discharges at a higher charging voltage. Finally, the discharge test of the PPS is carried out to verify the design of the PPS.

9.
Huan Jing Ke Xue ; 44(12): 6728-6743, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098399

RESUMEN

To reveal the influence mechanism of land use structure and spatial pattern on water quality of small and medium-sized rivers, water samples were collected from 25 sampling points in three small and medium-sized rivers of the Poyang Lake Basin in January 2022 and July 2022. Bioenv analysis, the Mantel test, and variance partitioning analysis were used to quantify the effects of land use structure and spatial patterns on water quality at different spatial scales; generalized additive models were used to fit the relationship between water quality and different land use structures and spatial patterns; and a generalized linear model was used to construct segmented regression models and calculate the thresholds based on the stepwise recursive method. The results showed that:① the average interpretation rate of land use structure and spatial pattern on river water quality was 59.72% during the wet period and 48.95% during the dry period. The sub-basin and riparian 100 m scales were the key scales of land use structure and spatial pattern affecting water quality in small and medium-sized rivers, with an average explanation rate of 54.70% and 64.88%, respectively. The joint explanation of land use structure and spatial pattern was an important factor driving the change in river water quality, accounting for 66.90% of the total explanation. ② The impact of land use structure on the water quality of small and medium-sized rivers had a significant threshold effect. When the proportion of construction land was less than 2%, farmland was less than 8%, or forest land was more than 82% at the sub-basin scale and the proportion of construction land was less than 12%, farmland was less than 41%, or forest land was more than 49% at the riparian buffer scale, all could significantly improve water quality. ③ The effect of spatial pattern on water quality in small and medium-sized rivers also had a threshold effect but was weaker than that of land use structure. A patch shape value more than 28.77 or patch diversity more than 0.69 at the sub-basin scale and a patch shape value more than 2.99 or patch diversity more than 1.02 at the riparian buffer scale could improve water quality. The above results showed that strengthening the management of land use at the sub-basin and riparian 100 m scales and setting a reasonable threshold of land use structure and spatial pattern can effectively prevent water quality from deteriorating.

10.
Huan Jing Ke Xue ; 44(12): 6790-6800, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098404

RESUMEN

Fe2+ has been commonly selected to activate peroxydisulfate(PDS) for sulfate radical(SO4-·) generation because of its eco-friendly, cost-effective, and high activity characteristics. However, Fe2+ can be rapidly oxidized to Fe3+ in the reaction, leading to poor utilization of iron for PDS activation. Further, a fairly high concentration of Fe2+ is generally required and may cause iron sludge production and secondary pollution. In this study, a minute Fe2+-activated PDS system induced by bisulfite(BS) was used to degrade paracetamol(APAP) in water. The results showed that the Fe2+-PDS system could be enhanced by the circulation of Fe2+-Fe3+ with the injection of BS and by keeping Fe2+ at a high concentration. Under the optimal conditions(PDS=0.6 mol·L-1; BS=0.4 mol·L-1; Fe2+=10 µmol·L-1; pH=4), 100% APAP(4 µmol·L-1) was removed within 180 s. The degradation rate of APAP increased with the increase in BS(0-0.6 mmol·L-1) and PDS(0.2-1.5 mmol·L-1) concentration, and a modest Fe2+ concentration could accelerate APAP removal. Co-existing substances inhibited the APAP removal and followed the order of HCO3->HPO42->Cl->NO3->humic acid(HA). Based on the quenching experiments and electron paramagnetic resonance spectroscopy test, SO4-· was shown to be the primary reactive species for APAP decomposition in the BS-Fe2+-PDS process. Three-dimensional fluorescence spectroscopy revealed that APAP intermediates had fluorescence characteristics. Moreover, five intermediates were identified, and the probable APAP degradation pathways were proposed. The removal efficiencies of APAP were lower in real waters than that in ultrapure water. Nevertheless, the removal effect was greatly improved after a prolonged reaction time. All results indicated that the BS-Fe2+-PDS system could be a promising method for organic pollutant treatment.

11.
Huan Jing Ke Xue ; 44(11): 6159-6171, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973099

RESUMEN

Microplastic-derived dissolved organic matter(MPDOM) during the aging process could be complexed with organic pollutants, heavy metals, and other contaminants and thus affect their migration and transformation. In this study, two types of microplastics, polyethylene terephthalate(PET) and polystyrene(PS), were selected to investigate the spectral properties of MPDOM and their effect on the complexation between MPDOM and sulfadiazine(SDZ)/copper ion(Cu2+) using the fluorescence quenching method, various spectroscopic analysis techniques, and the Ryan-Weber quenching model. The results of UV-vis absorption spectroscopy analysis showed that the molecular weight of the two MPDOMs decreased; the aromaticity and humification increased; and the carboxyl, carbonyl, hydroxyl, and ester substituents on aromatic rings increased after aging. The fluorescence quenching process between MPDOM and SDZ/Cu2+ was static quenching. After quenching, the aromaticity and humification of the two MPDOMs were similar, and the molecular weights were comparable. Combined with three-dimensional fluorescence spectra and parallel factor analysis, two humic-like components and one protein-like component were identified. In addition, the protein-like components of MPDOM reacted preferentially with SDZ and were more sensitive to Cu2+. The results of the Ryan-Weber quenching model revealed that the binding ability of humic-like components to PET-DOM was higher in both SDZ and Cu2+ quenching systems, but the binding ability of MPDOM in the SDZ quenching system was generally stronger than that in the Cu2+ system.

12.
Huan Jing Ke Xue ; 44(10): 5556-5566, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827772

RESUMEN

To investigate the characteristics of planktonic fungal communities in Nanchang lakes and the mechanism of environmental stress on planktonic fungal communities, surface water samples were collected from seven major urban lakes evenly distributed in different county-level districts of Nanchang in the dry (February and December), normal (April and October), and wet (June and August) seasons, respectively. The environmental stressors such as WT, DO, NH4+-N, and NO3--N were measured; the characteristics of planktonic fungal communities were studied using high-throughput sequencing; the symbiotic patterns of planktonic fungal communities were elucidated using network analysis and other methods; and the environmental stressors affecting the structure and symbiotic patterns of planktonic fungal communities were revealed. The results showed that ① the planktonic fungal community composition in lakes of Nanchang varied significantly among seasons but not significantly among the lakes. WT, DO, pH, and NH4+-N were the significant environmental stressors affecting the planktonic fungal community composition. ② The dominant phyla of the planktonic fungal community were Chytridiomycota (9.55%-33.14%), Basidiomycota (0.48%-4.25%), and Ascomycota (1.29%-3.19%), and the sizes of the dominant phyla were in the following order:wet season>normal season>dry season. The relative abundance of Chytridiomycota was significantly higher in the wet season than that in the normal season and the dry season, the relative abundance of Basidiomycota was significantly lower in the dry season than that in the normal and wet seasons, and the difference in Ascomycota among seasons was not significant. ③ The stability size of the planktonic fungal community symbiosis network in lakes of Nanchang was in the following order:wet season>normal season>dry season. WT was the best environmental stressor affecting the planktonic fungal community symbiosis pattern. The study can provide theoretical basis for the comprehensive evaluation and management study of the lake and provide guidance for protecting the lake ecosystem in the middle and lower reaches of the Yangtze River.


Asunto(s)
Lagos , Plancton , Lagos/microbiología , Ecosistema , Simbiosis , Estaciones del Año , Hongos , China
13.
Ecotoxicol Environ Saf ; 264: 115440, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688861

RESUMEN

Cadmium (Cd) contamination in paddy soil threatens rice growth and food safety, enriching manganese (Mn) in rice seedlings is expected to reduce Cd uptake by rice. The effects of 250 µM Mn-treated seedlings on reducing Cd uptake of four rice genotypes (WYJ21, ZJY1578, HHZ, and HLYSM) planted in 0.61 mg kg-1 Cd-contaminated soil, were studied through the hydroponic and pot experiments. The results showed that the ZJY1578 seedling had the highest Mn level (459 µg plant-1), followed by WYJ21 (309 µg plant-1), and less Mn accumulated in the other genotypes. The relative expression of OsNramp5 (natural resistance-associated macrophage protein) was reduced by 42.7 % in ZJY1578 but increased by 23.3 % in HLYSM. The expressions of OsIRT1 (iron-regulated transporter-like protein) were reduced by 24.0-56.0 % in the four genotypes, with the highest reduction in ZJY1578. Consequently, a greater reduction of Cd occurred in ZJY1578 than that in the other genotypes, i.e., the root and shoot Cd at the tillering were reduced by 27.8 % and 48.5 %, respectively. At the mature stage, total Cd amount and distribution in the shoot and brown rice were also greatly reduced in ZJY1578, but the inhibitory effects were weakened compared to the tillering stage. This study found various responses of Cd uptake and transporters to Mn-treated seedlings among rice genotypes, thus resulting in various Cd reductions. In the future, the microscopic transport processes of Cd within rice should be explored to deeply explain the genotypic variation.


Asunto(s)
Oryza , Plantones , Plantones/genética , Oryza/genética , Cadmio/toxicidad , Manganeso , Genotipo , Suelo
15.
Front Plant Sci ; 14: 1152405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152120

RESUMEN

Establishing an artificial grassland is a common measure employed to restore heavily degraded alpine grasslands for regional sustainability. The Three-River Headwaters Region in China has significant areas of black-soil-type grassland which is typified by heavy degradation; nearly 35% of the grassland regions in the Three-River Headwaters Region has degraded into this type. There are different plant community types of black-soil-type grasslands, however, it is not clear which restoration measures should be adopted for different kinds of black-soil-type grasslands. Here, we investigate the plant community characteristics and soil physicochemical properties of artificial grasslands, two types of black-soil-type grasslands, and native undegraded grassland in the Three-River Headwaters Region, then analyzed the direct and indirect interactions between the plant and soil properties by partial least squares path models (PLS-PM). Our results revealed that establishing artificial grassland significantly increased aboveground biomass and plant community coverage, and also decreased plant species richness and diversity and soil water content, soil organic carbon and total nitrogen in the 0-10 cm soil layer as compared with black-soil-type grasslands. Plant community diversity had a positive effect on plant community productivity, soil nutrient, and soil water content in native undegraded grassland. These results suggest that more management interventions are needed after establishing an artificial grassland, such as reducing dominant species in two types of black-soil-type grasslands, water regulation in the A. frigida-dominated meadow, diversifying plant species (i.e., Gramineae and sedges), and fertilizer addition.

16.
J Environ Manage ; 343: 118182, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224687

RESUMEN

Understanding how microbial processes develop and change in alpine meadow soils is key to global initiatives toward environmental sustainability and local land management. Yet, how microbial interactions mediate soil multifunctionality in disturbed and managed alpine meadows remains understudied. Here, we investigated multiple community metrics, particularly microbial network properties and assembly processes, of soil bacterial and fungal communities and their links to certain soil functions along a degradation-restoration sequence of alpine meadows in the Qinghai-Tibetan Plateau. Meadow degradation caused significant declines in soil hydraulic conductivity (e.g., higher bulk density, reduced soil porosity and water content) and nitrogen availability, leading to lowered soil multifunctionality. Meadow degradation only caused weak changes in microbial abundance, alpha diversity, and community composition, but remarkably reduced bacterial network complexity, to a less extent for fungal network properties. Short-term artificial restoration with productive grass monocultures did not restore soil multifunctionality, in turn even destabilized bacterial network and favored pathogenic over mutualistic fungi. Soil fungi community are more stable than bacteria in disturbed alpine meadows, and they evolved with distinct assembly strategies (stochastic-dominant versus deterministic-driven processes, respectively). Further, microbial network complexity, positively and better predicts soil multifunctionality than alpha diversity. Our work shows how microbial interaction complexity may enhance soil multifunctionality in degraded alpine meadow ecosystems, noting that meadow restoration with low plant species diversity may failed in restoring multiple ecosystem functions. These findings would help predict the outcomes of global environmental changes and inform management strategies in regional grassland conservation and restoration.


Asunto(s)
Ecosistema , Pradera , Suelo , Nitrógeno/análisis , Plantas , Microbiología del Suelo , Bacterias , Tibet
17.
Huan Jing Ke Xue ; 44(3): 1475-1483, 2023 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-36922208

RESUMEN

Bacterioplankton communities play an important role in nutrient cycling and organic matter decomposition in urban lakes. Based on high-throughput sequencing, we analyzed the temporal (April, June, and August) and urban-suburban difference and assembly of bacterioplankton communities in lakes of Nanchang City. Our results showed that:① the dominant bacterioplankton communities in the lakes were Actinobacteria (41.60%), Proteobacteria (22.29%), Cyanobacteria (16.21%), and Bacteroidota (10.17%). ② There were significant differences in bacterial communities between April, June, and August but not between urban lakes and suburban lakes. The abundance of 10 bacteria, mainly Proteobacteria (April>June>August) and Cyanobacteria (June>August>April), was significantly different among the three months. There was a significant distance decay pattern in June, which was not seen in April and August. ③ The proportion of non-freshwater bacteria was significantly higher in June than that in April and August, but there were no significant differences between urban lakes and suburban lakes. ④ Deterministic processes dominated the assembly of bacterioplankton communities, whereas stochastic processes had a lower contribution. Water temperature (WT) was the environmental factor that best explained the changes in bacterioplankton communities in the lakes.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Estaciones del Año , Plancton , Organismos Acuáticos , Proteobacteria , ARN Ribosómico 16S , Ecosistema
18.
Huan Jing Ke Xue ; 44(2): 781-795, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775602

RESUMEN

A large area of periodic water-level-fluctuating zone (WLFZ) in the Poyang Lake, regulated by a special hydrologic rhythm, was deposited with significant amounts of nutrients and pollutants. In this study, the WLFZ located in a typical estuarine wetland was chosen and sampling transects were arranged according to different vegetation types towards the lake. Soil/sediment and dominant plant (different tissues) samples were collected, and contents and enrichment levels of heavy metals (Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb) in these samples were analyzed. The migrations and conversions of heavy metal in the soil/sediment-plant system were evaluated, and driving environmental factors were explored. The results indicated that the contents of heavy metal in the soil/sediment presented an obvious single-peak distribution towards the lake, that is, the seasonally flooded zone was identified as the main deposited zone of heavy metals. There was a high enrichment level of Cu, Pb, and Sb in the soil/sediment from the WLFZ, and significant Cu and Sb pollution was identified (EF>5). The results from the potential ecological risk evaluation (RI) indicated that the ecological risk of the seasonally flooded zone was significantly higher than that in the flooded and unflooded zones, being at a low ecological risk (70 ≤ RI<140). There was no obvious spatial distribution of heavy metal contents in the dominant plant towards the lake, whereas significant seasonal differences were detected. The levels of heavy metals in plants at the growth phase (April) were higher compared to those at the other sampling times. The tissue distributions of heavy metal content basically followed the sequence of soil/sediment>root ≥ above-ground part, except for in Cd and Sb. The Cd content in the roots was significantly higher than that in the sediment/soil, and the Sb concentration was not significantly different among the three tissues. The bio-enrichment coefficient (BAF) and transfer factor (TF) of heavy metal in the dominant plant towards the lake did not show an obvious spatial pattern, and BAF and TF of heavy metals in the Artemisia capillaris Thunb. was higher than those in other dominant plants. The RDA revealed that pH, organic matter, plant height, and Fe-Mn oxides were the key environmental factors driving the migrations of heavy metals in the soil/sediment-plant system. These results will provide scientific basis and theoretical support for the biodiversity conservation and heavy metal pollution prevention and management in wetlands of the Poyang Lake.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lagos/química , Humedales , Cadmio/análisis , Suelo/química , Plomo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Agua , Medición de Riesgo , China , Sedimentos Geológicos/química
19.
Environ Res ; 224: 115561, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36828247

RESUMEN

The biogeographical distribution of plants and animals has been extensively studied, however, the biogeographical patterns and the factors that influence bacterial communities in lakes over large scales are yet to be fully understood, even though they play critical roles in biogeochemical cycles. Here, bacterial community compositional data, geographic information, and environmental factors were integrated for 326 Chinese lakes based on previously published studies to determine the underlying factors that shape bacterial diversity among Chinese lakes. The composition of bacterial communities significantly varied among the three primary climatic regions of China (Northern China, NC; Southern China, SC; and the Tibetan Plateau, TIP), and across two different lake habitats (waters and sediments). Sediment bacterial communities exhibited significantly higher alpha-diversity and distance-decay relationships compared to water communities. The results indicate that the "scale-dependent patterns" of controlling factors, primarily influenced by geographical factors, become increasingly pronounced as the spatial scale increases. At a national scale, geographical factors exerted a dominant influence on both the water and sediment communities across all lakes, as geographical barriers restrict the dispersal of individuals. At smaller spatial scales, temperature-driven selection effects played a greater role in shaping water bacterial community variation in the NC, SC, and TIP, while geographical factors had a stronger association with sediment bacterial community variation in the lakes of the three regions. This synthesis offers novel insights into the ecological factors that determine the distribution of bacteria in Chinese lakes.


Asunto(s)
Bacterias , Lagos , Lagos/química , China , Ecosistema , Agua , Sedimentos Geológicos
20.
Int J Radiat Oncol Biol Phys ; 116(3): 676-689, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36641040

RESUMEN

PURPOSE: This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters. METHODS AND MATERIALS: Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction. RESULTS: Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853). CONCLUSIONS: Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/cirugía , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/patología , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA