Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Imeta ; 3(2): e181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882496

RESUMEN

Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.

2.
Fish Shellfish Immunol ; 149: 109595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692381

RESUMEN

This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-ß was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.


Asunto(s)
Alimentación Animal , Bacillus , Dieta , Hepatopáncreas , Intestinos , Penaeidae , Probióticos , Animales , Penaeidae/inmunología , Penaeidae/crecimiento & desarrollo , Penaeidae/microbiología , Alimentación Animal/análisis , Dieta/veterinaria , Hepatopáncreas/inmunología , Hepatopáncreas/metabolismo , Probióticos/administración & dosificación , Probióticos/farmacología , Suplementos Dietéticos/análisis , Fermentación , Distribución Aleatoria , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata , Relación Dosis-Respuesta a Droga
3.
Microbiome ; 12(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167330

RESUMEN

BACKGROUND: Aquaculture plays an important role in global protein supplies and food security. The ban on antibiotics as feed additive proposes urgent need to develop alternatives. Gut microbiota plays important roles in the metabolism and immunity of fish and has the potential to give rise to novel solutions for challenges confronted by fish culture. However, our understanding of fish gut microbiome is still lacking. RESULTS: We identified 575,856 non-redundant genes by metagenomic sequencing of the intestinal content samples of grass carp. Taxonomic and functional annotation of the gene catalogue revealed specificity of the gut microbiome of grass carp compared with mammals. Co-occurrence analysis indicated exclusive relations between the genera belonging to Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes, suggesting two independent ecological groups of the microbiota. The association pattern of Proteobacteria with the gene expression modules of fish gut and the liver was consistently opposite to that of Fusobacteria, Firmicutes, and Bacteroidetes, implying differential functionality of Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes. Therefore, the two ecological groups were considered as two functional groups, i.e., Functional Group 1: Proteobacteria and Functional Group 2: Fusobacteria/Firmicutes/Bacteroidetes. Further analysis revealed that the two functional groups differ in genetic capacity for carbohydrate utilization, virulence factors, and antibiotic resistance. Finally, we proposed that the ratio of "Functional Group 2/Functional Group 1" can be used as a biomarker that efficiently reflects the structural and functional characteristics of the microbiota of grass carp. CONCLUSIONS: The gene catalogue is an important resource for investigating the gut microbiome of grass carp. Multi-omics analysis provides insights into functional implications of the main phyla that comprise the fish microbiota and shed lights on targets for microbiota regulation. Video Abstract.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Microbiota , Animales , Microbioma Gastrointestinal/genética , Multiómica , Proteobacteria/genética , Fusobacterias/genética , Bacteroidetes/genética , Firmicutes/genética , Fusobacterium/genética , ARN Ribosómico 16S/genética , Mamíferos/genética
4.
Fish Shellfish Immunol ; 142: 109139, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37821002

RESUMEN

Postbiotics have the ability to improve host metabolic disorders and immunity. In order to explore whether the postbiotics SWFC (cultured supernatant mixture of Cetobacterium somerae and Lactococcus lactis) repaired the adverse effects caused by feeding of high-fat diet (HFD), zebrafish were selected as the experimental animal and fed for 6 weeks, with dietary HFD as the control group, and HFD containing 0.3 g/kg and 0.4 g/kg SWFC as the treatment groups. The results indicated that addition of SWFC in the diet at a level of 0.3 and 0.4 g/kg didn't affect the growth performance of zebrafish (P > 0.05). Supplementation of dietary SWFC0.3 relieved lipid metabolism disorders through significant increasing in the expression of pparα and cpt1, and decreasing the expression of cebpα, pparγ, acc1 and dgat-2 genes (P < 0.05). Moreover, the content of triacylglycerol was markedly lower in the liver of zebrafish grouped under SWFC0.3 (P < 0.05). Dietary SWFC0.3 also improved the antioxidant capacity via increasing the expression level of ho-1, sod and gstr genes, and significant inducing malondialdehyde content in the liver of zebrafish (P < 0.05). Besides, dietary SWFC0.3 also notably improved the expression level of lysozyme, c3a, defbl1 and defbl2 (P < 0.05). The expression level of pro-inflammatory factors (nf-κb, tnf-α, and il-1ß) were significantly decreased and the expression level of anti-inflammatory factor (il-10) was markedly increased in the postbiotics 0.3 g/kg group (P < 0.05). Feeding with SWFC0.3 supplemented diet for 6 weeks improved the homeostasis of gut microbiota and increased the survival rate of zebrafish after challenged with Aeromonus veronii Hm091 (P < 0.01). It was worth noting that the positive effect of dietary SWFC at a level of 0.3 g/kg was considerably better than that of 0.4 g/kg. This may imply that the effectiveness and use of postbiotics is limited by dosage.


Asunto(s)
Microbioma Gastrointestinal , Lactococcus lactis , Animales , Dieta Alta en Grasa/efectos adversos , Pez Cebra , Hígado/metabolismo
5.
Fish Shellfish Immunol ; 141: 109074, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714442

RESUMEN

Probiotics are promising antibiotics alternatives to improve growth and disease resistance of cultured fish. Our study aimed to investigate the effect of dietary stabilized culture of Lactobacillus rhamnosus GCC-3 on growth performance, gut and liver health and anti-viral ability of zebrafish (Danio rerio). Zebrafish (0.161 ± 0.001 g) were fed control and the experimental diet containing 1% GCC-3 culture (1 × 107 CFU/g diet) for four weeks. Growth performance and gut and liver health parameters were monitored after four weeks feeding. The gut microbiota was analyzed by 16S rRNA gene sequencing. In another experiment, zebrafish (0.212 ± 0.001 g) were fed with basal or GCC-3 diets and challenged by spring viremia of carp virus (SVCV) at the end of feeding. The antiviral immune response was evaluated at 2nd and 4th days post SVCV infection and survival rate was calculated 14 days after challenge. The results showed that adding 1% GCC-3 significantly improved growth performance of zebrafish (P < 0.05). The intestinal expression of hypoxia-inducible factor Hif-1α, tight junction protein ZO-1α and ZO-1ß was significantly up-regulated in 1% GCC-3 group compared with control (P < 0.05). Besides, 1% GCC-3 decreased the content of MDA and increased total antioxidant capacity in the intestine, and the relative expression of SOD, GST and Gpxa was improved. The abundance of Proteobacteria was reduced while Firmicutes was enriched in the intestinal microbiota of 1% GCC-3 group compared with control (P < 0.05). Zebrafish fed 1% GCC-3 showed higher survival rate after SVCV challenge. Accordingly, the expression of antiviral genes in the spleen was increased at 2nd and 4th days post infection. In conclusion, our results indicate that dietary 1% GCC-3 supplementation can improve gut and liver health as well as antiviral immunity of zebrafish.


Asunto(s)
Lacticaseibacillus rhamnosus , Pez Cebra , Animales , Antivirales , ARN Ribosómico 16S , Dieta/veterinaria , Hígado , Alimentación Animal/análisis
6.
Anim Nutr ; 14: 32-42, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37234949

RESUMEN

Fish gut barrier damage under intensive culture model is a significant concern for aquaculture industry. This study aimed to investigate the effects of bile acids (BAs) on gut barriers in Micropterus salmoides. A germ-free (GF) zebrafish model was employed to elucidate the effects of the direct stimulation of BAs and the indirect regulations mediated by the gut microbiota on gut barrier functions. Four diets were formulated with BAs supplemented at 0, 150, 300 and 450 mg/kg, and these 4 diets were defined as control, BA150, BA300 and BA450, respectively. After 5 weeks of feeding experiment, the survival rate of fish fed with BA300 diet was increased (P < 0.05). Histological analysis revealed an improvement of gut structural integrity in the BA150 and BA300 groups. Compared with the control group, the expression of genes related to chemical barrier (mucin, lysozyme and complement 1) and physical barrier (occludin and claudin-4) was increased in the BA150 and BA300 groups (P < 0.05), and the expression of genes related to immunological barrier (interleukin [IL]-6, tumor growth factor ß, IL-10, macrophage galactose-type lectin and immunoglobulin M [IgM]) was significantly increased in the BA300 group (P < 0.05), but the expression of genes related to chemical barrier (hepcidin) and immunological barrier (IL-1ß, tumor necrosis factor-α, IL-6 and arginase) was significantly decreased in the BA450 group (P < 0.05). Gut microbiota composition analysis revealed that the abundance of Firmicutes was augmented prominently in the BA150 and BA300 groups (P < 0.05), while that of Actinobacteriota and Proteobacteria showed a downward trend in the BA150 and BA300 groups (P > 0.05). The results of the gut microbiota transferring experiment demonstrated an upregulation of gut barrier-related genes, including immunoglobulin Z/T (IgZ/T), IL-6, IL-1ß and IL-10, by the gut microbiota transferred from the BA300 group compared with the control (P < 0.05). Feeding the BA300 diet directly to GF zebrafish resulted in enhanced expression of IgM, IgZ/T, lysozyme, occludin-2, IL-6 and IL-10 (P < 0.05). In conclusion, BAs can improve the gut barriers of fish through both direct and indirect effects mediated by the gut microbiota.

7.
Front Nutr ; 9: 894278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685883

RESUMEN

Succinate is widely used in the food and feed industry as an acidulant, flavoring additive, and antimicrobial agent. This study investigated the effects of dietary succinate on growth, energy budget, nutritional metabolism, protein succinylation, and gut microbiota composition of zebrafish. Zebrafish were fed a control-check (0% succinate) or four succinate-supplemented diets (0.05, 0.10, 0.15, and 0.2%) for 4 weeks. The results showed that dietary succinate at the 0.15% additive amount (S0.15) can optimally promote weight gain and feed intake. Whole body protein, fat, and energy deposition increased in the S0.15 group. Fasting plasma glucose level decreased in fish fed the S0.15 diet, along with improved glucose tolerance. Lipid synthesis in the intestine, liver, and muscle increased with S0.15 feeding. Diet with 0.15% succinate inhibited intestinal gluconeogenesis but promoted hepatic gluconeogenesis. Glycogen synthesis increased in the liver and muscle of S0.15-fed fish. Glycolysis was increased in the muscle of S0.15-fed fish. In addition, 0.15% succinate-supplemented diet inhibited protein degradation in the intestine, liver, and muscle. Interestingly, different protein succinylation patterns in the intestine and liver were observed in fish fed the S0.15 diet. Intestinal proteins with increased succinylation levels were enriched in the tricarboxylic acid cycle while proteins with decreased succinylation levels were enriched in pathways related to fatty acid and amino acid degradation. Hepatic proteins with increased succinylation levels were enriched in oxidative phosphorylation while proteins with decreased succinylation levels were enriched in the processes of protein processing and transport in the endoplasmic reticulum. Finally, fish fed the S0.15 diet had a higher abundance of Proteobacteria but a lower abundance of Fusobacteria and Cetobacterium. In conclusion, dietary succinate could promote growth and feed intake, promote lipid anabolism, improve glucose homeostasis, and spare protein. The effects of succinate on nutritional metabolism are associated with alterations in the levels of metabolic intermediates, transcriptional regulation, and protein succinylation levels. However, hepatic fat accumulation and gut microbiota dysbiosis induced by dietary succinate suggest potential risks of succinate application as a feed additive for fish. This study would be beneficial in understanding the application of succinate as an aquatic feed additive.

8.
Front Nutr ; 9: 870343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571918

RESUMEN

Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS.

9.
J Nutr ; 151(10): 2986-2996, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383941

RESUMEN

BACKGROUND: Dietary nucleotides (NTs) have been reported to affect hepatic function and composition. However, the effects on hepatic lipid deposition are less studied. OBJECTIVES: We aimed to identify the regulatory role of dietary NTs in hepatic lipid deposition of zebrafish and elucidate the underlying mechanisms. METHODS: Zebrafish (60 ± 1.69 mg; 1 mo old) were fed control diet (16.2% energy as fat) or diet supplemented with 0.1% NTs or 0.02% AMP in feeding experiments 1 and 2. Experiment 3 was conducted with zebrafish larvae. In experiment 4, 1-mo-old zebrafish were fed a high-fat diet (HFD, 38.2% energy as fat) or an HFD supplemented with 0.1% NTs or 0.02% AMP. Hepatic lipid deposition was evaluated by triglyceride (TG) content and staining. Phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) was assayed by immunoblotting. Zebrafish liver (ZFL) cells were treated with exogenous adenosine. Small interfering RNA was used to knock down AMPK or nucleoside transporter SLC28a1 in ZFL cells. Vivo-morpholino was used to knock down AMPK in zebrafish larvae. RESULTS: Dietary 0.1% NTs or 0.02% AMP reduced hepatic TGs by 62% and 32%, respectively, compared with control (P < 0.05). Dietary AMP enhanced hepatic AMPK and ACC phosphorylation. Consistently, exogenous adenosine enhanced AMPK and ACC phosphorylation by 111% and 53%, respectively, in ZFL cells (P < 0.01) and reduced TG content by 56% (P < 0.05). Knockdown of AMPK and SLC28a1 abolished the effect of adenosine on lipid deposition in ZFL cells, and AMPK morpholino blocked the hepatic lipid-lowering effect of dietary AMP in vivo. Finally, dietary NTs and AMP activated AMPK and attenuated hepatic lipid deposition (28% and 30%, P < 0.05) in fish fed an HFD. CONCLUSIONS: Dietary NTs and AMP reduce hepatic lipid deposition in zebrafish, which involves exogenous AMP-mediated AMPK activation. Our results suggest that dietary NTs can contribute to alleviation of hepatic steatosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Pez Cebra , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Dieta Alta en Grasa , Metabolismo de los Lípidos , Hígado/metabolismo , Nucleótidos/farmacología , Triglicéridos/metabolismo , Pez Cebra/metabolismo
10.
iScience ; 24(6): 102515, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142031

RESUMEN

Propionate and propionyl-CoA accumulation have been associated with the development of mitochondrial dysfunction. In this study, we show that propionate induces intestinal damage in zebrafish when fed a high-fat diet (HFD). The intestinal damage was associated with oxidative stress owing to compromised superoxide dismutase 2 (Sod2) activity. Global lysine propionylation analysis of the intestinal samples showed that Sod2 was propionylated at lysine 132 (K132), and further biochemical assays demonstrated that K132 propionylation suppressed Sod2 activity. In addition, sirtuin 3 (Sirt3) played an important role in regulating Sod2 activity via modulating de-propionylation. Finally, we revealed that intestinal oxidative stress resulting from Sod2 propionylation contributed to compositional change of gut microbiota. Collectively, our results in this study show that there is a link between Sod2 propionylation and oxidative stress in zebrafish intestines and highlight the potential mechanism of intestinal problems associated with high propionate levels.

11.
Gut Microbes ; 13(1): 1-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33840371

RESUMEN

The capability of carbohydrate utilization in fish is limited compared to mammals. It has scientific and practical significance to improve the ability of fish to use carbohydrates. The efficiency of dietary carbohydrate utilization varies among fish with different feeding habits, which are associated with differential intestinal microbiota. In this study, we found that zebrafish fed with omnivorous diet (OD) and herbivorous diet (HD) showed better glucose homeostasis compared with carnivorous diet (CD) fed counterpart and the differential glucose utilization efficiency was attributable to the intestinal microbiota. The commensal bacterium Cetobacterium somerae, an acetate producer, was enriched in OD and HD groups, and administration of C. somerae in both adult zebrafish and gnotobiotic larval zebrafish models resulted in improved glucose homeostasis and increased insulin expression, supporting a causative role of C. somerae enrichment in glucose homeostasis in fish. The enrichment of C. somerae was constantly associated with higher acetate levels, and dietary supplementation of acetate promotes glucose utilization in zebrafish, suggesting a contribution of acetate in the function of C. somerae. Furthermore, we found that the beneficial effect of both acetate and C. somerae on glucose homeostasis was mediated through parasympathetic activation. Overall, this work highlights the existence of a C. somerae-brain axis in the regulation of glucose homeostasis in fish and suggests a role of acetate in mediating the axis function. Our results suggest potential strategies for improvement of fish carbohydrate utilization.


Asunto(s)
Acetatos/metabolismo , Fusobacterias , Glucosa/metabolismo , Intestinos/microbiología , Sistema Nervioso Parasimpático/metabolismo , Pez Cebra/metabolismo , Pez Cebra/microbiología , Alimentación Animal , Animales , Microbioma Gastrointestinal , Homeostasis , Interacciones Microbiota-Huesped , Insulina/metabolismo , Modelos Animales , ARN Ribosómico 16S
12.
Dent Traumatol ; 37(3): 457-463, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33369075

RESUMEN

BACKGROUND/AIMS: Tooth avulsion is the most severe traumatic tooth injury. Immediate replantation after avulsion provides the highest success rate, whereas delayed replantation with dehydration for >1 h always results in ankylosis, replacement resorption, and eventual tooth loss. The aim of this study was to investigate the geomorphologic change of ultrastructure on tooth root surfaces due to dehydration. MATERIAL AND METHODS: Twenty-four sound human premolars and fully developed third molars without periodontitis were selected for the experiment. Roots were separated into 6-7 pieces with an intact root surface area (3 × 3 mm2 ) and then divided into the following groups: fresh group, prolonged dehydration groups (air drying for 1, 2, 4, 12, or 24 h), and dehydrated teeth (air drying for 2 h) treated with acid (Tris-HCl buffer or citric acid buffer). More than six pieces of root from each group were subjected to scanning electron microscopy (SEM) observation. Captured images were exported to ImageJ software to quantitatively analyze the areas covered with fibers. Statistical significance was determined by comparing the means of the different groups using t-testing or one-way analysis of variance followed by post hoc testing. RESULTS: Fibrous "vegetation" covering the cementum was observed on the fresh root surface by SEM. This was destroyed by dehydration (>1 h), resulting in a root surface resembling the "Gobi Desert." The difference was statistically significant (p < .001). Root surface deteriorated by dehydration could be recovered by the re-use of the fibers embedded in the cementum as acid demineralization of the outer layer of cementum exposed the embedded fibers to simulate the geomorphology of fresh root surface. CONCLUSIONS: Dehydrated teeth had deteriorated geomorphology of the root surface, which could be reversed by the re-use of the fibers embedded in the cementum using citric acid. Direct evidence from SEM gives new insights into the replantation of dehydrated avulsed teeth.


Asunto(s)
Resorción Radicular , Anquilosis del Diente , Avulsión de Diente , Humanos , Microscopía Electrónica de Rastreo , Ligamento Periodontal , Reimplante Dental , Raíz del Diente
13.
Front Nutr ; 8: 797510, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145984

RESUMEN

With the widespread use of high-fat diets (HFDs) in aquaculture, fatty livers are frequently observed in many fish species. The aim of this study was to investigate if docosahexaenoic acid (DHA) could be used to reduce the fatty liver in zebrafish generated by a 16% soybean oil-HFD over 2 weeks of feeding. The DHA was added to iso-lipidic HFD at 0.5, 1.0, and 2.0% of diet. Supplementation of DHA reduced growth and feed efficiency in a dose dependent manner being lowest in the HFDHA2.0 group. Hepatic triglyceride (TG) in zebrafish fed 0.5% DHA-supplemented HFD (HFDHA0.5) was significantly lower than in the HFD control. Transcriptional analyses of hepatic genes showed that lipid synthesis was reduced, while fatty acid ß-oxidation was increased in the HFDHA0.5 group. Furthermore, the expression of Cyclin D1 in liver of zebrafish fed HFDHA0.5 was significantly reduced compared to that in fish fed HFD. In zebrafish liver cells, Cyclin D1 knockdown and blocking of Cyclin D1-CDK4 signal led to inhibited lipid biosynthesis and elevated lipid ß-oxidation. Besides, DHA-supplemented diet resulted in a rich of Proteobacteria and Actinobacteriota in gut microbiota, which promoted lipid ß-oxidation but did not alter the expression of Cyclin D1 in germ-free zebrafish model. In conclusion, DHA not only inhibits hepatic lipid synthesis and promotes lipid ß-oxidation via Cyclin D1 inhibition, but also facilitates lipid ß-oxidation via gut microbiota. This study reveals the lipid-lowering effects of DHA and highlights the importance of fatty acid composition when formulating fish HFD.

14.
Front Nutr ; 7: 570344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195367

RESUMEN

Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.

15.
Fish Shellfish Immunol ; 104: 36-45, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32473360

RESUMEN

The contribution of cold water aquaculture for the world fish production is significant. Although sturgeon farming is an important part of China's cold water aquaculture industry, its production is less compared with the current potentiality of the country. There are many reasons for the lower production of cold water fish farming including feed and disease. The aim of the present study was to investigate the effect of a paraprobiotic and postbiotic feed supplement (Herpes Worry Free or HWF™) on the growth, feeding efficiency and gut microbiota balance of hybrid sturgeon. Besides, the effect of sturgeon gut microbiota fed on the diet supplemented with HWF™ on the expression of growth promoter, and immune regulatory genes of germ free (GF) zebrafish was evaluated. Sturgeon were fed for three weeks with HWF™ supplemented or basal diet. At the end of the experiment gut content of sturgeon, fed on either experimental diet was transferred and colonized to GF zebrafish. Sturgeon fed with HWF™ supplemented diet showed significantly higher weight gain rate and lower feed conversion ratio (FCR) as compared with the control (P < 0.05). Compared with the control group, the relative abundance of Firmicutes, were significantly higher in the HWF™ group (P < 0.05), whereas Proteobacteria, Actinobacteria and Chlamydiae were significantly higher in the control group (P < 0.05). Furthermore, at the genus level Clostridium (64.50 ± 5.99%) and Lactococcus (29.5 ± 3.05%) were the most dominant gut bacteria in the HWF™ group and the control group of sturgeon, respectively. The expression of genes related to growth, inflammation and non-specific immunity was significantly upregulated in GF zebrafish colonized with gut microbiota of HWF™ sturgeon group. In conclusion, HWF™ played significant role in growth, feed efficiency and modulation of gut microbiota of sturgeon. The gut microbiota of sturgeon fed on the diet supplemented with HWF™ upregulated the expression of genes related to growth, inflammation and non-specific immunity in GF zebrafish model.


Asunto(s)
Peces/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Relación Dosis-Respuesta a Droga , Peces/crecimiento & desarrollo , Peces/microbiología , Microbioma Gastrointestinal/fisiología , Probióticos/administración & dosificación , Distribución Aleatoria
16.
Commun Biol ; 2: 274, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31372513

RESUMEN

Natural polysaccharides have received much attention for their ability to ameliorate hepatic steatosis induced by high-fat diet. However, the potential risks of their use have been less investigated. Here, we show that the exopolysaccharides (EPS) from Lactobacillus rhamnosus GG (LGG) and L. casei BL23 reduce hepatic steatosis in zebrafish fed a high-fat diet, while BL23 EPS, but not LGG EPS, induce liver inflammation and injury. This is due to the fact that BL23 EPS induces gut microbial dysbiosis, while LGG EPS promotes microbial homeostasis. We find that LGG EPS, but not BL23 EPS, can directly activate intestinal HIF1α, and increased HIF1α boosts local antimicrobial peptide expression to facilitate microbial homeostasis, explaining the distinct compositions of LGG EPS- and BL23 EPS-associated microbiota. Finally, we find that liver injury risk is not confined to Lactobacillus-derived EPS but extends to other types of commonly used natural polysaccharides, depending on their HIF1α activation efficiency.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Hígado Graso/etiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Polisacáridos/administración & dosificación , Prebióticos/administración & dosificación , Animales , Péptidos Catiónicos Antimicrobianos/biosíntesis , Dieta Alta en Grasa , Microbioma Gastrointestinal , Lactobacillus , Larva , Pez Cebra/crecimiento & desarrollo
18.
Fish Shellfish Immunol ; 86: 734-755, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30553887

RESUMEN

China is the largest aquaculture producer in the world. Antibiotics were extensively used to ensure the development of the intensive aquaculture; however, the use of antibiotics causes safety- and environment-associated problems. As an alternative strategy to antibiotics, aquatic probiotics have attracted attention. The microbial organisms used as probiotics or tested as potential probiotics in Chinese aquaculture belong to various taxonomic divisions, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and yeast. Moreover, the mixture of probiotic strains and synbiotics are also widely used. Studies on the mode of action of aquatic probiotics have extended our understanding of the probiotic effects, and novel mechanisms have been discovered, such as interference of quorum sensing. However, use of probiotics in Chinese aquaculture is still at an initial stage, and there are potential risks for some probiotic applications in aquaculture. Further regulation and management are required to normalize the production and usage of aquatic probiotics. In this review, we discuss species, effects, and mode of actions of probiotics in Chinese aquaculture since 2008. Challenges and future directions for research are also discussed.


Asunto(s)
Bacterias/química , Peces/metabolismo , Probióticos/farmacología , Animales , Acuicultura , Fenómenos Fisiológicos Bacterianos , China , Especificidad de la Especie
19.
Fish Shellfish Immunol ; 86: 1064-1071, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30590163

RESUMEN

In this study, we firstly tested the effects of dietary nucleotides on the disease resistance and innate immunity of zebrafish. Further, we investigated the role of intestinal microbiota in the nucleotides-induced immunostimulatory effect by using a germ-free zebrafish model and microbiota transfer technique. Fish were fed control or nucleotides (NT)-supplemented diets (at 0.05%,0.1%, 0.15% or 0.2%, m/m) for 4 weeks, followed by immersion challenge with Aeromonas hydrophila NJ-1. The results showed that 0.1% NT group enhanced the resistance of zebrafish against A. hydrophila infection. We further observed that the relative expressions of mucin, claudin16, occlusin1, hepcidin, defensin beta-like, myeloperoxidase (Mpo), and serum amyloid A (Saa) increased in the 0.1% NT group compared with control (P < 0.05), indicating that dietary nucleotides enhanced the physical barrier and mucosal immunity in the intestine of zebrafish. Moreover, ROS level in the head kidney was significantly increased in NT fed zebrafish versus control (P < 0.05), indicating enhanced systematic immunity. Furthermore, dietary NT significantly elevated the relative expressions of mpo, saa and the ROS activity in germ-free zebrafish, while germ-free zebrafish colonized with NT-altered microbiota had no significant difference in the relative expressions of mpo, saa and the ROS activity compared with the control microbiota-colonized fish, suggesting that the immunostimulatory effect of dietary NT is mediated by direct action of NT and does not involve the microbiota. Consistently, dietary NT can protect germ-free zebrafish from pathogenic infection, whereas germ-free zebrafish colonized with NT microbiota showed no difference in disease resistance compared with control microbiota colonized counterparts. Together, these results indicated that the immunostimulatory and disease protection effect of dietary nucleotides in zebrafish was mediated by direct action of the nucleotides, and does not involve the intestinal microbiota.


Asunto(s)
Dieta/veterinaria , Microbioma Gastrointestinal , Nucleótidos/farmacología , Pez Cebra/inmunología , Pez Cebra/microbiología , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vida Libre de Gérmenes , Infecciones por Bacterias Gramnegativas/inmunología , Riñón Cefálico/inmunología , Inmunidad Innata/efectos de los fármacos
20.
J Nutr ; 148(8): 1217-1228, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982798

RESUMEN

Background: Palmitic acid (PA) is the main saturated fatty acid naturally occurring in animal fats and vegetable oils. In recent decades, palm oil, an alternative lipid source containing high amounts of PA, has been widely used to replace fish oil in aquafeed. Objective: We investigated the hepatotoxicity of PA in zebrafish and the underlying mechanism. Methods: One-month-old zebrafish fed a high-fat diet (HFD) containing 16% soybean oil and 3 PA-incorporated HFDs [4%, 8%, and 12% PA (12PA)] for 2 wk (experiment 1) and 4 wk (experiment 2) were used to evaluate PA-induced liver damage and endoplasmic reticulum (ER) stress. Germ-free (GF) zebrafish fed low-fat, high-fat, or 12PA diets for 5 d were used to study the direct effects of PA on liver damage (experiment 3). GF zebrafish colonized with HFD or 12PA microbiota for 48 h were used to elucidate the indirect effects of PA-altered microbiota on liver damage (experiment 4). Last, GF zebrafish colonized with HFD or 12PA microbiota were used to evaluate the effects of different microbiotas on PA absorption (experiment 5). Results: In experiment 1, the proportion of PA in the liver linearly increased as its percentage in dietary lipid increased (r2 = 0.83, P < 0.05). In experiment 2, the expression of glucose-regulated protein 78 (Grp78) and C/EBP-homologous protein (Chop) was higher in the 12PA group than in the HFD group (2.2- and 2.7-fold, respectively; P < 0.05). The activity of caspase-12 was increased by 61.1% in the 12PA group compared with the HFD group (P < 0.05). In experiment 3, caspase-12 activity was higher in the 12PA group than in the HFD group (P < 0.05). In experiment 4, GF zebrafish colonized with PA-altered microbiota had higher caspase-12 activity (P < 0.05) than those colonized by HFD microbiota. In experiment 5, PA-altered microbiota promoted PA absorption (P < 0.05) and aggravated ER stress and liver damage in the context of high-PA feeding. Conclusions: The PA-altered microbiota indirectly induced ER stress and liver damage in zebrafish. Moreover, the PA microbiota promoted the absorption of PA, leading to enhanced PA overflow into the liver and aggravated hepatotoxicity of PA in zebrafish.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/microbiología , Grasas de la Dieta/toxicidad , Estrés del Retículo Endoplásmico , Microbioma Gastrointestinal , Hígado/efectos de los fármacos , Ácido Palmítico/toxicidad , Alimentación Animal , Animales , Caspasa 12/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/metabolismo , Aceite de Palma/química , Aceite de Palma/toxicidad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA