Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 3): 135304, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39242009

RESUMEN

Gellan gum has been widely used in many industries due to its excellent physical properties. In this study, the effects of different fermentation conditions on molecular weight and production of gellan gum were analyzed, and the optimized fermentation conditions for a high molecular weight gellan gum (H-GG: 6.42 × 105 Da) were obtained, which increased the molecular weight and yield of gellan gum by 201.4 % and 44.9 % respectively. Fourier transform infrared spectroscopy (FT-IR) and x-ray diffraction (XRD) analysis indicated that H-GG has similar characteristic absorption and semi-crystalline structures with the initial gellan gum (I-GG), and it was composed of glucose, rhamnose, and glucuronic acid showing no obvious changes in the molecular structure. Scanning electron microscope (SEM) observation revealed that the filaments of H-GG were slender, longer, and looser with larger pores. Importantly, gel properties analysis showed that the gel strength, viscoelasticity, and water-holding capacity of H-GG were better than those of I-GG, and the rheological results revealed that the H-GG is a pseudoplastic fluid with higher apparent viscosity and stable viscoelasticity at 20-70 °C. Therefore, the molecular weight and yield of gellan gum are significantly affected by fermentation conditions, and the obtained H-GG demonstrates improved gel and rheological properties.


Asunto(s)
Fermentación , Peso Molecular , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Reología , Viscosidad , Fenómenos Químicos , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
2.
Foods ; 13(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39200416

RESUMEN

Steamed bread is a traditional staple food in China, and it has gradually become loved by people all over the world because of its healthy production methods. With the improvement in people's living standards, the light flavor of steamed bread fermented by single yeast cannot meet people's needs. Multi-strain co-fermentation is a feasible way to improve the flavor of steamed bread. Here, the dynamic change profiles of volatile substances in steamed bread co-fermented by Saccharomyces cerevisiae SQJ20 and Wickerhamomyces anomalus GZJ2 were analyzed using the electronic nose (E-nose) and headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The five detectors of the E-nose rapidly detected the changes in volatile substances in different dough or steamed bread with the highest response value in co-fermented dough. A total of 236 volatile substances were detected in all the samples using HS-SPME-GC-MS, and alcohols were the most variable component, especially Phenylethyl alcohol. Significantly, more alcohols and esters were upregulated in co-fermented dough, and the addition of W. anomalus GZJ2 improved the key volatile aroma compounds of steamed bread using the relative odor activity value method (ROAV), especially the aldehydes and alcohols. Moreover, these key volatile aroma compounds can be quickly distinguished using the W2S detector of the E-nose, which can be used for the rapid detection of aroma components in steamed bread.

3.
Int J Biol Macromol ; 242(Pt 2): 124899, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196715

RESUMEN

Gellan gum (GG) is used in many industries. Here, we obtained a low molecular weight GG (L-GG) directly produced by M155, the high-yield mutant strain of Sphingomonas paucimobilis ATCC 31461, which was selected using UV-ARTP combined mutagenesis. The molecular weight of L-GG was 44.6 % lesser than that of the initial GG (I-GG), and the GG yield increased by 24 %. The monosaccharide composition and Fourier transform-infrared spectroscopic patterns of L-GG were similar to those of I-GG, which indicated that the decrease in the molecular weight of L-GG was probably because of reduction in the degree of polymerization. In addition, microstructural analysis revealed that the surface of L-GG was rougher, with smaller pores and tighter network, than that of I-GG. L-GG showed low hardness, gumminess, and chewiness, which are indicative of better taste. The results of rheological analysis revealed that the L-GG solution is a typical non-Newtonian fluid with low viscoelasticity, which exhibited stable dynamic viscoelasticity within 20-65 °C. To the best of our knowledge, this is the first report of direct biosynthesis of low molecular weight GG during fermentation, which will reduce the manufacturing costs. Our observations provide a reference for precise and expanded applications of GG.


Asunto(s)
Polisacáridos Bacterianos , Sphingomonas , Peso Molecular , Fermentación , Polisacáridos Bacterianos/química , Sphingomonas/genética , Sphingomonas/química
4.
Foods ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553820

RESUMEN

In this study, an efficient mutagenesis and rapid screening method of high-yield gellan gum mutant by atmospheric and room temperature plasma (ARTP) treatment combined with Near-Infrared Spectroscopy (NIRS) was proposed. A NIRS model for the on-line detection of gellan gum yield was constructed by joint interval partial least squares (siPLS) regression on the basis of chemical determination and NIRS acquisition of gellan gum yield. Five genetically stable mutant strains were screened using the on-line NIRS detection of gellan gum yield in the fermentation from approximately 600 mutant strains induced by ARTP. Remarkably, compared with the original strain, the gellan gum yield of mutant strain 519 was 9.427 g/L (increased by 133.5%) under the optimal fermentation conditions, which was determined by single-factor and response surface optimization. Therefore, the method of ARTP mutation combined with the NIRS model can be used to screen high-yield mutant strains of gellan gum and other high-yield polysaccharide strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA