RESUMEN
Exogenous abiotic stimulant treatments are a straightforward and effective method for enhancing secondary metabolites in plants. In this study, the response surface optimization method was used to optimize the conditions for enriching flavonoids in short-germinated black soybeans under a slight acid treatment, and the mechanism of flavonoid accumulation during black soybean germination was explored. The results show that the use of a 126.2 mM citric acid-sodium citrate buffer (pH 5.10) as a slight acid treatment resulted in the highest flavonoid content when the black soybeans were germinated for 24 h. Under these conditions, the isoflavonoid (glycitin, daidzein, and genistein) increased significantly, and the flavonoid content reached 2.32 mg/g FW. The microacidified germination treatment significantly increased the activities and relative gene expression levels of key enzymes involved in flavonoid metabolism (4-coumarate-CoA ligase and cinnamic acid 4-hydroxylase, etc.). However, the slight acid treatment inhibited the growth of the black soybeans and caused damage to their cells. This was evidenced by significantly higher levels of malondialdehyde, superoxide anion, and hydrogen peroxide compared to the control group. Furthermore, the antioxidant system in the short-germinated soybeans was activated by the slight acid treatment, leading to a significant increase in the activities and relative gene expression levels of catalase and peroxidase. The results above show that a slight acid treatment was beneficial in inducing the accumulation of flavonoids during the growth of black soybean sprouts. This lays a technical foundation for producing black soybean products that are rich in flavonoids.
RESUMEN
Highland barley flour-based coating batter has rarely been reported, although highland barley flour is promising due to its high ß-glucan and amylose content. In this study, highland barley flour was used to substitute 40% to 80% of wheat flour to form a highland barely-wheat composite flour used in the coating batter. The characteristics of the highland barley-wheat composite flour and its effect on the properties of coating batter and deep-fried meat were analyzed. Results showed that the composite flour significantly improved water holding capacity, oil absorbing capacity, and water solubility index. In contrast, no significant change was observed in the water absorption index or swelling power. The incorporation of highland barley flour significantly changed the pasting properties of the composite flour. Compared with the wheat flour, the viscosity and the pickup of the coating batter made with composite flour increased from 4905 Pa·s and 0.53% to more than 12,252 Pa·s and 0.63%, respectively, and its water mobility decreased. These changes were closely related to the substitution rate of highland barley flour. The composite flour significantly increased the moisture content from 27.73% to more than 33.03% and decreased the oil content of the crust from 19.15% to lower than 16.44%, respectively. It decreased L* and increased a* of the crust and decreased the hardness, adhesiveness, and springiness of the deep-fried meat. A spongy inner structure with a flatter surface was formed in all composite flour-based crusts, and the substitution rate influenced the flatness of the crust. Thus, highland barley flour could be used for batter preparation with partial substitution, enhancing the quality of deep-fried meat and acting as an oil barrier-forming ingredient for fried batter foods.
RESUMEN
To develop teff-based food products with acceptable quality, the composition, structure, and properties of teff protein fractions should be better understood. In this study, teff proteins were extracted, and their protein composition, structure, and properties were calculated, analyzed, and compared with those of wheat gliadin and glutenin. Results showed that teff flour contained 9.07% protein, with prolamin as its main protein fraction. The isoelectric points of albumin, globulin, prolamin, and glutelin were at pH 3.6, 3.0, 4.4, and 3.4, respectively. Teff prolamin and glutelin showed a significant difference in amino acids and free energy of hydration compared to wheat gliadins and glutenins. The protein chain length of teff prolamins was smaller than that of wheat gliadins, and teff glutelins lacked high molecular weight glutelin subunits. Teff prolamin had the highest α-helices content (27.08%), whereas no random coils were determined, which is different from wheat gliadin. Teff glutelin had a lower content of ß-turn than wheat glutenin, and no α-helices were determined in it. Teff prolamin and glutelin had lower disulfide bond content and surface hydrophobicity. Teff prolamin had significantly higher thermal stability than wheat gliadin, whereas the thermal stability of teff glutelin was significantly lower than that of wheat glutenin.
RESUMEN
In order to improve the quality of the gluten free rice bread (GFRB), pre-gelatinised rice flour (PGRF) was made and used to partially replace natural rice flour in the production of GFRB. The pre-gelatinisation parameters were optimised and the effects of PGRF on the quality of the GFRB and its batter were studied. The results showed that optimal PGRF was obtained when 50% total water was mixed with 1.0% rice flour and the mixture heated at 80 °C for 2 min. Supplementation with PGRF significantly improved the properties of GFRB by affecting its baking properties, textural properties, colour, and crumb grain features. Effects of PGRF on GFRB were mainly caused by the more closely packed gel structure of rice starch in the bread batter, the higher onset temperature during gelatinisation and the complex effect of PGRF on water-binding capacity in bread batter during the baking process. As the pre-gelatinisation parameters of flours and their effect on gluten-free baked products varied with grain variety, processing properties should be studied before using them, and emphasis should be placed on new techniques such as flour pre-gelatinisation to obtain gluten-free foods with improved quality.
RESUMEN
Quinoa starch was developed as a new kind of Pickering emulsifier by enzymatic modification. The morphological structure, crystalline structure, lamellar structure, fractal structure, particle size distribution, contact angle, emulsion index (EI), and emulsion micromorphology were studied to explore the relationship between structure characteristics, hydrophilic property, and emulsifying properties of enzymatically modified (EM) quinoa starches. With the increasing enzymatic hydrolysis time in the test range of 0-9 h, particle size of EM quinoa starch decreased, and the broken starch and contact angle of EM quinoa starch increased; the EI value of emulsions with EM quinoa starch increased, and the oil droplet size of emulsions with EM quinoa starch decreased. It suggested that both the smallest particle size and the closest extent of the contact angle to 90° derived the best emulsifying property of EM-9. The EM quinoa starch had higher emulsifying capacity at higher oil volume fraction (Φ) (50%) than at lower Φ (20%), proving that the EM starch has potential to be used as Pickering emulsifiers in higher oil products, such as salad dressing.
Asunto(s)
Chenopodium quinoa/química , Emulsionantes/química , Interacciones Hidrofóbicas e Hidrofílicas , Almidón/química , Cristalización , Emulsiones/química , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Electricidad Estática , Difracción de Rayos XRESUMEN
To investigate the bitterness status of asparagus juices during lactic acid fermentation, Limosilactobacillus fermentum Xd, Lacticaseibacillus paracasei Yd, Lactiplantibacillus plantarum 5-7-3, and their various combinations were used for single and mixed fermentation of asparagus juices. The fermentation characteristics and variation of the main bitter substances were studied. For the single and cofermented samples, the viable counts, pH value, and acidity were ranged from 8.33-8.65 lg CFU/mL, 3.58-3.86, and 6.29-6.52 g/kg, respectively. By sensory evaluation, the bitterness of every fermented sample was continuously reduced by at least 77% during fermentation, and the corresponding content of total saponins, flavonoids, and 9 bitter amino acids showed varying degrees of declination. These results suggested that it was feasible to develop novel low-bitter asparagus juices fermented by the lactic acid bacteria used in this study.
Asunto(s)
LactobacillalesRESUMEN
Different ionic liquid (IL)s were added to hydroxypropyl methylcellulose /monosodium phosphate (HPMC/MSP) photophobic film to improve its ductility, and their effects on its multi-scale structures and physical properties were studied. After adding these ILs, smoothness of the fractal structure, tensile strength, modulus of the film did not change obviously, while the crystallinity, the number of holes, and elongation increased, the hole size and Tg decreased. Compared to films with other ILs, the film with 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) showed the largest elongation and crystallinity, the smallest hole size, the least holes, and highest whiteness. The film with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) showed the largest water content and the lowest Tg. The increased elongation proved that all these ILs could improve the ductility of the film, among which, [EMIM]BF4 had the strongest plasticizing effect.
Asunto(s)
Derivados de la Hipromelosa/química , Plastificantes/química , Embalaje de Alimentos , Líquidos Iónicos/química , Fosfatos/química , Resistencia a la TracciónRESUMEN
To derive a mutant of L. helveticus SH2-1 with the capacity of weak postacidification and high texturing, first, taking L. delbrueckii frs4-1 and S. thermophilus grx02 as the controls, H+-ATPase activity was demonstrated to be highly related to the postacidification of L. helveticus SH2-1. Then, by detecting H+-ATPase activity, the weak postacidify mutant of L. helveticus SH2-1 (renamed as L. helveticus sh2-5-66) was selected from 80 UV mutants. The pH and acidity of the milk fermented with L. helveticus sh2-5-66 were separately 0.57 pH units higher and 57.1 °T lower than that of L. helveticus SH2-1. The acidification of L. helveticus sh2-5-66 was further demonstrated to be genetically stable during 100 generations cultivation. Moreover, the milk fermented with L. helveticus sh2-5-66 showed improvement in textural and rheological properties and flavor during storage which could be further improved by coculture with the commercial starter S. thermophilus st447.
RESUMEN
This work focuses on the effect of curdlan (CL) on dynamic viscoelastic property, thermal reversible property, viscosity, and the fluid types of hydroxypropyl methylcellulose (HPMC) at different temperatures. Compared to the blends at 25 °C, the blends had a smaller linear viscoelastic region (LVR), a higher gel strength, and larger storage modulus (G') and loss modulus (G") values at 82 °C. G', G", gel strength, and viscosity increased with the increase of CL. Repeated temperature sweep led to increased G' and G" of HPMC/CL blends. For HC6 and HC8, the gel formation temperature of the repeated temperature sweep was significantly lower than that of the first sweep. The samples at 82 °C, except for the sample with 8% CL, were all yield-shear thinning fluids, and the samples at 40 °C were shear thinning fluids. The creation of HPMC/CL and its rheological research might provide some methodological references for the study of other thermal-thermal gel blends.
RESUMEN
In order to verify the cryoprotective effect of an antifreeze protein (BaAFP-1) obtained from barley on bread dough, the effect of BaAFP-1 on the rheological properties, microstructure, fermentation, and baking performance including the proofing time and the specific volume of bread dough and bread crumb properties during freezing treatment and freeze-thaw cycles were analysed. BaAFP-1 reduced the rate of decrease in storage modulus and loss modulus values during freezing treatment and freeze-thaw cycles. It influenced the formation and the shape of ice formed during freezing and inhibited ice recrystallization during freeze-thaw. BaAFP-1 maintained gas production ability and gas retention properties, protected gluten network and the yeast cells from deterioration caused by ice formation and ice crystals recrystallisation in dough samples during freezing treatment and freeze-thaw treatment. It slow down the increase rate of hardness of bread crumb. The average area of pores in bread crumbs decreased significantly (p < 0.05) as the total number of pores increased (p < 0.05), and the addition of BaAFP-1 inhibited this deterioration. These results confirmed the cryoprotective activity of BaAFP-1 in bread dough during freezing treatment and freeze-thaw cycles.
RESUMEN
Hydroxypropyl methylcellulose (HPMC)/sodium citrate (SC)/lipid tea polyphenol (LTP) photophobic films with different pore sizes from micron scale to nanometer scale were prepared by regulating the SC content (1-7%). The microstructures, physical and sustained antioxidant properties of these films were studied by using wide angel X-ray diffraction, small angle X-ray scattering (SAXS), scanning electron microscope, whiteness meter, ultraviolet spectrophotometer, texture analyzer and peroxide value test. Composite films with higher SC content showed larger pore size and whiteness. With the increasing SC content, crystallinity first increased then decreased. The addition of SC decreased the Ds (surface fractal dimension) value, smoothness of the cross-section structure, tensile strength, elongation and modulus of composite films. HPMC/SC/LTP microporous films possessed control-release property in oil system, reflected by the lowest peroxide value of peanut oil enclosed in film with 3% SC during three weeks, meaning this film showed the best sustained antioxidant property.
Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Derivados de la Hipromelosa/química , Derivados de la Hipromelosa/farmacología , Luz , Fenómenos Mecánicos , PorosidadRESUMEN
The present study investigated the role of colchicine in the treatment of RSV infection. Treatment of BEAS-2B cells following RSV infection with colchicine caused a significant decrease in the number of viral plaques. In RSV-infected BEAS-2B cells' treatment with colchicine leads to a significant up-regulation of both IFN-ß1 and RIG-I genes. The levels of interleukin, NO, and MDA were suppressed in BEAS-2B cells infected with RSV by colchicine. The phosphorylation of Stat3, COX-2, and p38 was also suppressed significantly by colchicine. The phosphorylation of IkBα was promoted in RSV-infected BEAS-2B cells' oncolchicine treatment. In neonatal rats, replication of RSV was inhibited significantly by colchicine treatment which was evident by suppression of RSV-L gene expression. A significant decrease in the level of IL-6 and TNF-α was caused in neonatal rat BALF by colchicine treatment. The production of MDA, NO and MPO in the neonatal rat BALF was suppressed markedly by colchicine treatment. Treatment of the neonatal rats infected by RSV with colchicine suppressed the release of IκBα and COX-2 in the pulmonary epithelial cells. Colchicine treatment of the neonatal rats promoted the expression of IFN-α and IFN-ß1. In summary, the current study showed that colchicine inhibited RSV infection in neonatal rats through regulation of anti-oxidative factor production. The expression of IFN-ß1 and RIG-I genes was also up-regulated in the RSV-infected alveolar epithelial cells by treatment with colchicine. Therefore, colchicine may be developed as the therapeutic agent for the treatment of RSV infection.
RESUMEN
Objective: Our objective was to conduct a meta-analysis to investigate the clinicopathological features and prognostic value of programmed cell death ligand 1 (PD-L1) expression in patients with urothelial carcinoma (UC). Materials and methods: Twenty-seven studies with 4,032 patients were included in the meta-analysis. Pooled ORs and 95% CIs were used to examine the associations between clinical factors and PD-L1 expression. HRs and 95% CIs were extracted from eligible studies. Heterogeneity was evaluated using the chi-squared-based Q test and I2 statistic. Results: Expression of PD-L1 on tumor cells (TCs) was associated with muscle-invasive disease (OR=3.67, 95% CI: 2.53-5.33), and inversely associated with the history of intravesical bacilli Calmette-Guerin therapy (OR=0.39, 95% CI: 0.18-0.82) in bladder cancer patients. PD-L1 expression on TCs was associated with worse overall survival (HR=2.06, 95% CI: 1.38-3.06) in patients with organ-confined bladder cancer. PD-L1 expression in patients with UC was significantly related to better objective response rate after PD-1/PD-L1 antibody treatment. Conclusions: Expression of PD-L1 on TCs was associated with muscle-invasive disease in patients with bladder cancer. Patients with PD-L1-positive UC had a significantly better response to PD-1/PD-L1 targeted treatment.
RESUMEN
Large-, medium-, and small-sized granules were separated from cassava and potato starches. Fourier transform infrared spectroscopy, wide angle X-ray diffraction, small angle X-ray scattering, nuclear magnetic resonance and scanning electron microscope were used to investigate the supramolecular structures of cassava and potato starch fractions. The crystallinity of small-sized potato starch (SPS) was lower than that of its counterparts, while crystallinities of all cassava fractions were similar. The contents of lamellar structure of small-sized granules were the smallest, while those of their counterparts were similar. The lamellar repeat distance was similar for the starch fractions. Self-similar structure of SPS showed mass fractal with the lowest compactness, while that of small-sized corn starch showed surface fractal with the largest compactness. The NMR test revealed that SPS had the highest total double helix content, while its counterparts showed similar values. Moreover, a new 13C peak at 64 ppm was observed for SPS.
RESUMEN
Postsurgery infection is a common complication after laparoscopic radical cystectomy (LRC) followed by urinary diversion. White blood cell (WBC) values and C-reactive protein (CRP) are routinely used as markers for infection, but lack of specificity and their elevation is often delayed in clinically significant events. In this study, we aimed to investigate the value of procalcitonin (PCT) kinetics in assisting early diagnosis of infection in patients undergoing LRC.The patients' medical records between May 2013 and May 2016 were reviewed retrospectively. WBC, CRP, and PCT plasma levels as well as clinical symptoms were registered in 306 patients preoperatively (day 0), and 5 consecutive days postoperatively. Based on microbiological and clinical data, patients were grouped into noninfection- (NI-) and infection- (I-) groups. The day of new onset infection was observed were defined as day t0 and the day after that as day t1. For the NI-group, the day on which PCT was at the peak was defined as day t1 and the previous day as day t0.Of the 306 patients, 46 (15.03%) have proven infection. PCT levels were analogous at day t0:NI-group [median (interquartile range)]: 0.69(1.99) vs I-group [median (interquartile range)]: 1.0[0.75], Pâ=â.1. PCT levels were significantly increased at day t1 in the I-group[median (interquartile range)]:2.9(1.3) vs NI-group[median (interquartile range)]: 1.3(1.5), Pâ<â.01. The area under the curve for the prediction of infection was 0.72 [95% confidence interval (CI)â=â0.63-0.81] for the absolute value of PCT; and for delta PCT:0.88 (95% CIâ=â0.81-0.94), Pâ<â.01. The optimal cut-off value was 0.79 ng/mL with the highest Youden index of 0.80 for delta-PCT to indicate infection. Neither absolute values nor changes in CRP, or WBC could predict infection better. The "delta" was considered as the changes in the absolute values (subtracting day t0 from day t1) of PCT, CRP, and WBC.This study suggest that early elevation of PCT within the first 24âhours of new onset infection, interpreted with clinical results, appears to be a promising indicator for the diagnosis of infections following LRC.
Asunto(s)
Calcitonina/sangre , Cistectomía/efectos adversos , Laparoscopía/efectos adversos , Complicaciones Posoperatorias/diagnóstico , Infecciones Urinarias/diagnóstico , Anciano , Área Bajo la Curva , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Cistectomía/métodos , Diagnóstico Precoz , Femenino , Humanos , Cinética , Laparoscopía/métodos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/microbiología , Valor Predictivo de las Pruebas , Periodo Preoperatorio , Estudios Prospectivos , Valores de Referencia , Estudios Retrospectivos , Sensibilidad y Especificidad , Derivación Urinaria/efectos adversos , Derivación Urinaria/métodos , Infecciones Urinarias/microbiologíaRESUMEN
BACKGROUND: Many previous studies have reported the role of oat ß-glucan (OBG) in the reduction of postprandial glucose, and hypothesised that OBG may form a protective layer along the intestinal wall, acting as a viscous barrier to decrease glucose transportation. This study examined whether the molecular weight (MW) and concentration of OBG affected the diffusion of glucose in vitro. The effect of OBG on glucose transportation in vitro and sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase) activity in the everted small intestines of normal rats was also examined. RESULTS: In vitro, higher MWs and concentrations of OBG increased the inhibitory effects on glucose diffusion and glucose adsorption. The transport of glucose by glucose transporters and Na(+)/K(+)-ATPase activity in the small intestinal mucosa of rats were significantly lower following the addition of OBG than those in the absence of OBG at the same time-points throughout glucose transportation (P < 0.05). In the OBG-treated group, the Na(+)/K(+)-ATPase activity decreased with increasing OBG MW. However, as the concentration of OBG in the solution increased, the Na(+)/K(+)-ATPase activity in the small intestine increased due to stronger gastrointestinal motility. We also found that higher MWs of OBG had a greater inhibitory effect on intestinal disaccharidase activities in vitro. CONCLUSION: Oat ß-glucan is able to adsorb glucose molecules, inhibit glucose transport, decrease the concentration of available glucose and suppress disaccharidase activities in the small intestine.
Asunto(s)
Avena/química , Glucosa/metabolismo , Intestino Delgado/efectos de los fármacos , beta-Glucanos/farmacología , Adsorción , Animales , Transporte Biológico , Relación Dosis-Respuesta a Droga , Intestino Delgado/metabolismo , Microscopía Electroquímica de Rastreo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Propiedades de Superficie , beta-Glucanos/administración & dosificación , beta-Glucanos/químicaRESUMEN
Antifreeze proteins from cold-acclimated malting barley were extracted by infiltration-centrifugation. The infiltration time was optimised, and its extraction effect was evaluated. The effect of cold acclimation on the accumulation of barley antifreeze proteins (BaAFPs) was assessed by comparing the thermal hysteresis activities (THA) of proteins extracted from both cold acclimated and non-cold acclimated barley grain. Ultra-filtration, ammonium precipitation and column chromatography were used successively to purify the BaAFPs, and MALDI-TOF-MS/MS was used for protein identification. The results showed that infiltration-centrifugation was more targeted than the traditional method, and 10h was the optimal infiltration time. THA was observed only after cold acclimation implied that AFPs only began to accumulate after cold acclimation. After purification, BaAFP-I was obtained at an electrophoresis level and its THA was 1.04°C (18.0 mg ml(-1)). The mass fingerprinting and sequencing results indicated the homology of the BaAFP-I to alpha-amylase inhibitor BDAI-1 (Hordeum vulgare).