Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Dev Comp Immunol ; 145: 104711, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062456

RESUMEN

Locusta migratoria manilensis is a major agricultural pest that causes severe direct and indirect damage to several crops. Thus, to provide a theoretical foundation for pest control, the role of CrebA in the reproduction and immune regulation of L. migratoria was investigated. CrebA is a bZIP transcription factor that critically regulates intracellular protein secretion. In this study, CrebA was widely expressed in the brain, fat body, integument, midgut, and reproductive tissues of different maturity stages of adult locusts, especially in the female fat body. RNA interfering (RNAi)-mediated silencing of CrebA inhibited locusts ovarian development, and key reproduction gene expressions, Vgs, VgRs, Chico, and JHAMT were downregulated. After the locusts were injected with Micrococcus luteus or Escherichia coli, M. luteus activated lysozyme expression, while the E. coli activated both phenol oxidase cascade and lysozyme expression. Furthermore, both bacteria stimulated the upregulation of the antimicrobial peptide genes DEF3 and DEF4. However, CrebA silencing is fatal to locusts infection with E. coli, with a mortality rate of up to 96.3%, and resulted in a significant decrease in the expression of DEF3 and DEF4 and changes in the activities of phenol oxidase and lysozyme of locusts infected by bacteria. Collectively, CrebA may be involved in diverse biological processes, including reproduction and immunity. CrebA inhibited locusts reproduction by regulating JH signaling pathway and inhibits the expression of immune genes TLR6, IMD, and AMPs. These results demonstrate CrebA seems to play a crucial role in reproduction and innate immunity.


Asunto(s)
Locusta migratoria , ARN , Femenino , Animales , ARN/metabolismo , Locusta migratoria/genética , Interferencia de ARN , Muramidasa/metabolismo , Escherichia coli/metabolismo , Monofenol Monooxigenasa/metabolismo , Reproducción , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
2.
Front Immunol ; 13: 848267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935997

RESUMEN

Locusta migratoria manilensis is one of the most important agricultural pests in China. The locust has high fecundity and consumes large quantities of food, causing severe damage to diverse crops such as corn, sorghum, and rice. Immunity against pathogens and reproductive success are two important components of individual fitness, and many insects have a trade-off between reproduction and immunity when resources are limited, which may be an important target for pest control. In this study, adult females L. migratoria manilensis were treated with different concentrations (5 × 106 spores/mL or 2 × 107 spores/mL) of the entomopathogenic fungus Paranosema locustae. Effects of input to immunity on reproduction were studied by measuring feeding amount, enzyme activity, vitellogenin (Vg) and vitellogenin receptor (VgR) production, ovary development, and oviposition amount. When infected by P. locustae, feeding rate and phenol oxidase and lysozyme activities increased, mRNA expression of Vg and VgR genes decreased, and yolk deposition was blocked. Weight of ovaries decreased, with significant decreases in egg, length and weight.Thus, locusts used nutritive input required for reproduction to resist invasion by microsporidia. This leads to a decrease in expression of Vg and VgR genes inhibited ovarian development, and greatly decreased total fecundity. P. locustae at 2 × 107 spores/mL had a more obvious inhibitory effect on the ovarian development in migratory locusts. This study provides a detailed trade-off between reproduction and immune input of the female, which provides a reliable basis to find pest targets for biological control from those trade-off processes.


Asunto(s)
Locusta migratoria , Microsporidios , Animales , Femenino , Locusta migratoria/genética , Locusta migratoria/microbiología , Oviposición , Reproducción
3.
Front Physiol ; 11: 518876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324230

RESUMEN

Glucose metabolism is a biologically important metabolic process. Glycogen synthase kinase (GSK-3) is a key enzyme located in the middle of the sugar metabolism pathway that can regulate the energy metabolism process in the body through insulin signaling. This paper mainly explores the regulatory effect of glycogen synthase kinase on the metabolism of glycogen and trehalose in the brown planthopper (Nilaparvata lugens) by RNA interference. In this paper, microinjection of the target double-stranded GSK-3 (dsGSK-3) effectively inhibited the expression of target genes in N. lugens. GSK-3 gene silencing can effectively inhibit the expression of target genes (glycogen phosphorylase gene, glycogen synthase gene, trehalose-6-phosphate synthase 1 gene, and trehalose-6-phosphate synthase 2 gene) in N. lugens and trehalase activity, thereby reducing glycogen and glucose content, increasing trehalose content, and regulating insect trehalose balance. GSK-3 can regulate the genes chitin synthase gene and glucose-6-phosphate isomerase gene involved in the chitin biosynthetic pathway of N. lugens. GSK-3 gene silencing can inhibit the synthesis of chitin N. lugens, resulting in abnormal phenotypes and increased mortality. These results indicated that a low expression of GSK-3 in N. lugens can regulate the metabolism of glycogen and trehalose through the insulin signal pathway and energy metabolism pathway, and can regulate the biosynthesis of chitin, which affects molting and wing formation. The relevant research results will help us to more comprehensively explore the molecular mechanism of the regulation of energy and chitin metabolism of insect glycogen synthase kinases in species such as N. lugens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA