Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Mater Chem B ; 12(30): 7367-7383, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38940905

RESUMEN

The bone immune microenvironment can influence the occurrence and progression of bone defects. To date, research on promoting macrophage M2 polarization to improve bone injury repair has been insufficient. In this study, we designed an injectable poly(L-lactic acid) (PLLA) porous microsphere that forms calcium phosphate crystals on its surface by binding to melatonin, followed by bionanomimetic mineralization in vitro. The microsphere is injectable and degradable, and its release of melatonin (MT) and calcium phosphate (CaP) crystals promotes macrophage M2 polarization, reprogramming of macrophages, and enhanced osteogenesis. After LPS stimulation, the proportion of M2-polarized macrophages in the MS@CaP@MT group was 39.2 ± 2.7%, significantly higher than that in other groups (P < 0.05). Further, in the MS@CaP@MT group, rats exhibited bone mineral densities of 129.4 ± 12.8 mg cc-1 at 2 weeks and 171.6 ± 13.6 mg cc-1 at 4 weeks in the defect area, which were significantly higher than those in other groups (P < 0.05). Using an animal model of femoral condylar defects, we demonstrated that MT PLLA porous microspheres loaded with calcium phosphate crystals can improve the immune microenvironment and form a microsphere-centered osteogenesis model. This significantly accelerates bone defect repair and provides a potential strategy for bone defect treatment.


Asunto(s)
Fosfatos de Calcio , Macrófagos , Melatonina , Microesferas , Poliésteres , Fosfatos de Calcio/química , Animales , Melatonina/farmacología , Melatonina/química , Poliésteres/química , Porosidad , Ratas , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas Sprague-Dawley , Regeneración Ósea/efectos de los fármacos , Células RAW 264.7 , Masculino , Propiedades de Superficie , Tamaño de la Partícula , Osteogénesis/efectos de los fármacos
2.
Small ; : e2401241, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660829

RESUMEN

It is challenging to sufficiently regulate endogenous neuronal reactive oxygen species (ROS) production, reduce neuronal apoptosis, and reconstruct neural networks under spinal cord injury conditions. Here, hydrogel surface grafting and microsol electrospinning are used to construct a composite biomimetic scaffold with "external-endogenous" dual regulation of ROS. The outer hydrogel enhances local autophagy through responsive degradation and rapid release of rapamycin (≈80% within a week), neutralizing extracellular ROS and inhibiting endogenous ROS production, further reducing neuronal apoptosis. The inner directional fibers continuously supply brain-derived neurotrophic factors to guide axonal growth. The results of in vitro co-culturing show that the dual regulation of oxidative metabolism by the composite scaffold approximately doubles the neuronal autophagy level, reduces 60% of the apoptosis induced by oxidative stress, and increases the differentiation of neural stem cells into neuron-like cells by ≈2.5 times. The in vivo results show that the composite fibers reduce the ROS levels by ≈80% and decrease the formation of scar tissue. RNA sequencing results show that composite scaffolds upregulate autophagy-associated proteins, antioxidase genes, and axonal growth proteins. The developed composite biomimetic scaffold represents a therapeutic strategy to achieve neurofunctional recovery through programmed and accurate bidirectional regulation of the ROS cascade response.

3.
Bioact Mater ; 37: 132-152, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549774

RESUMEN

Sustained and intense inflammation is the pathological basis for intervertebral disc degeneration (IVDD). Effective antagonism or reduction of local inflammatory factors may help regulate the IVDD microenvironment and reshape the extracellular matrix of the disc. This study reports an immunomodulatory hydrogel microsphere system combining cell membrane-coated mimic technology and surface chemical modification methods by grafting neutrophil membrane-coated polylactic-glycolic acid copolymer nanoparticles loaded with transforming growth factor-beta 1 (TGF-ß1) (T-NNPs) onto the surface of methacrylic acid gelatin anhydride microspheres (GM) via amide bonds. The nanoparticle-microsphere complex (GM@T-NNPs) sustained the long-term release of T-NNPs with excellent cell-like functions, effectively bound to pro-inflammatory cytokines, and improved the release kinetics of TGF-ß1, maintaining a 36 day-acting release. GM@T-NNPs significantly inhibited lipopolysaccharide-induced inflammation in nucleus pulposus cells in vitro, downregulated the expression of inflammatory factors and matrix metalloproteinase, and upregulated the expression of collagen-II and aggrecan. GM@T-NNPs effectively restored intervertebral disc height and significantly improved the structure and biomechanical function of the nucleus pulposus in a rat IVDD model. The integration of biomimetic technology and nano-drug delivery systems expands the application of biomimetic cell membrane-coated materials and provides a new treatment strategy for IVDD.

4.
Adv Healthc Mater ; 13(18): e2304585, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411324

RESUMEN

The innate immune response is crucial to inflammation, but how neutrophils and macrophages act in bone repair and tissue engineering treatment strategies await clarification. In this study, it is found that N2 neutrophils release stronger "eat me" signals to induce macrophage phagocytosis and polarize into the M2 anti-inflammatory phenotype. Guided by this biological mechanism, a mesoporous bioactive glass scaffold (MBG) is filled with hyaluronic acid methacryloyl (HAMA) hydrogel loaded with Transforming growth factor-ß1 (TGFß1) adenovirus (Ad@H), constructing a genetically engineered composite scaffold (Ad@H/M). The scaffold not only has good hydrophilicity and biocompatibility, but also provides mechanical stress support for bone repair. Adenovirus infection quickly induces N2 neutrophils, upregulating NF-κB and MAPK signaling pathways through Toll-like receptor 4 (TLR4) to promote the inflammatory response and macrophage phagocytosis. Macrophages perform phagocytosis and polarize towards the M2 phenotype, mediating the inflammatory response by inhibiting the PI3K-AKT-NF-κB pathway, maintaining homeostasis of the osteogenic microenvironment. The role of the Ad@H/M scaffold in regulating early inflammation and promoting long-term bone regeneration is further validated in vivo. In brief, this study focuses on the cascade of reactions between neutrophils and macrophage subtypes, and reports a composite scaffold that coordinates the innate immune response to promote bone repair.


Asunto(s)
Regeneración Ósea , Inmunidad Innata , Macrófagos , Neutrófilos , Andamios del Tejido , Animales , Inmunidad Innata/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Osteogénesis/efectos de los fármacos , Fagocitosis , Ingeniería Genética/métodos , FN-kappa B/metabolismo , Ingeniería de Tejidos/métodos , Ratones Endogámicos C57BL , Células RAW 264.7
5.
Adv Healthc Mater ; 13(11): e2303851, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38226706

RESUMEN

Targeting macrophages can facilitate the site-specific repair of critical bone defects. Herein, a composite hydrogel, gelatin-Bletilla striata polysaccharide-mesoporous bioactive glass hydrogel (GBMgel), is constructed via the self-assembly of mesoporous bioactive glass on polysaccharide structures, through the Schiff base reaction. GBMgel can efficiently capture macrophages and drive the recruitment of seed stem cells and vascular budding required for regeneration in the early stages of bone injury, and the observed sustained release of inorganic silicon ions further enhances bone matrix deposition, mineralization, and vascular maturation. Moreover, the use of macrophage-depleted rat calvarial defect models further confirms that GBMgel, with ligand-selective macrophage targeting, increases the bone regeneration area and the proportion of mature bone. Mechanistic studies reveal that GBMgel upregulates the TLR4/NF-κB and MAPK macrophage pathways in the early stages and the JAK/STAT3 pathway in the later stages; thus initiating macrophage polarization at different time points. In conclusion, this study is based on the endogenous self-healing properties of bone macrophages, which enhances stem cell homing, and provides a research and theoretical basis upon which bone tissue can be reshaped and regenerated using the body's immune power, providing a new strategy for the treatment of critical bone defects.


Asunto(s)
Regeneración Ósea , Hidrogeles , Macrófagos , Animales , Regeneración Ósea/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Ratas Sprague-Dawley , Ratones , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células RAW 264.7 , Ligandos , Masculino , Gelatina/química , Cráneo/efectos de los fármacos , Cráneo/patología , Cráneo/lesiones , Polisacáridos/química , Polisacáridos/farmacología
6.
Adv Sci (Weinh) ; 11(6): e2306780, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037294

RESUMEN

Although mitochondria are crucial for recovery after spinal cord injury (SCI), therapeutic strategies to modulate mitochondrial metabolic energy to coordinate the immune response and nerve regeneration are lacking. Here, a ligand-screened cerium-based metal-organic framework (MOF) with better ROS scavenging and drug-loading abilities is encapsulated with polydopamine after loading creatine to obtain microcapsules (Cr/Ce@PDA nanoparticles), which reverse the energy deficits in both macrophages and neuronal cells by combining ROS scavenging and energy supplementation. It reprogrames inflammatory macrophages to the proregenerative phenotype via the succinate/HIF-1α/IL-1ß signaling axis. It also promotes the regeneration and differentiation of neural cells by activating the mTOR pathway and paracrine function of macrophages. In vivo experiments further confirm the effect of the microcapsules in regulating early ROS-inflammation positive-feedback chain reactions and continuously promoting nerve regeneration. This study provides a new strategy for correcting mitochondrial energy deficiency in the immune response and nerve regeneration following SCI.


Asunto(s)
Estructuras Metalorgánicas , Traumatismos de la Médula Espinal , Humanos , Estructuras Metalorgánicas/metabolismo , Ligandos , Cápsulas/metabolismo , Cápsulas/farmacología , Cápsulas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA