Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cureus ; 16(6): e61799, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975434

RESUMEN

Objective This study aims to investigate the association between specific imaging parameters, namely, the Evans index (EI) and ventricular volume (VV), and the variation in gait speed observed in patients with idiopathic normal pressure hydrocephalus (iNPH) before and after cerebrospinal fluid (CSF) removal/lumbar drain (LD). Furthermore, it seeks to identify which imaging parameters are the most reliable predictors for significant improvements in gait speed post procedure. Methods In this retrospective analysis, the study measured the gait speed of 35 patients diagnosed with idiopathic normal pressure hydrocephalus (iNPH) before and after they underwent CSF removal. Before lumbar drain (LD), brain images were segmented to calculate the Evans index and ventricular volume. The study explored the relationship between these imaging parameters (the Evans index and ventricular volume) and the improvement in gait speed following CSF removal. Patients were divided into two categories based on the degree of improvement in gait speed, and we compared the imaging parameters between these groups. Receiver operating characteristic (ROC) curve analysis was employed to determine the optimal imaging parameter thresholds predictive of gait speed enhancement. Finally, the study assessed the predictive accuracy of these thresholds for identifying patients likely to experience improved gait speed post-LD. Results Following CSF removal/lumbar drain, the participants significantly improved in gait speed, as indicated by a paired sample t-test (p-value = 0.0017). A moderate positive correlation was observed between the imaging parameters (EI and VV) and the improvement in gait speed post-LD. Significant differences were detected between the two patient groups regarding EI, VV, and a composite score (statistical test value = 3.1, 2.8, and 2.9, respectively; p-value < 0.01). Receiver operating characteristic (ROC) curve analysis identified the optimal thresholds for the EI and VV to be 0.39 and 110.78 cm³, respectively. The classification based on these thresholds yielded significant associations between patients displaying favorable imaging parameters and those demonstrating improved gait speed post-LD, with chi-square (χ²) values of 8.5 and 7.1, respectively, and p-values < 0.01. Furthermore, these imaging parameter thresholds had a 74% accuracy rate in predicting patients who would improve post-LD. Conclusion The study demonstrates that ventricle volume and the Evans index can significantly predict gait speed improvement after lumbar drain (LD) in patients with iNPH.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38657140

RESUMEN

OBJECTIVE: Radiological imaging is pivotal in diagnosing idiopathic normal pressure hydrocephalus (iNPH), given the similarity of its symptoms to other neurodegenerative diseases. We aimed to correlate the Evans index (EI), callosal angle (CA), and the volume of the lateral ventricles measured before cerebrospinal fluid removal with the resultant outcomes in gait response. METHODS: In our retrospective study, we identified 42 patients with a diagnosis of iNPH. These patients underwent gait analysis, imaging, and lumbar puncture. Radiological assessments included measurements of CA EI and lateral ventricular volume. Clinically, we assessed the following 4 gait parameters: cadence, gait speed, stride length, and timed up and go. Change in the 4 gait parameters was calculated, normalized, and compiled into a composite score, following which the group was divided into 'responders' and 'nonresponders' based on z score of 0.5. Our dependent variable was clinical improvement in gait, and our independent variables included lateral ventricular volume, EI, and CA. We performed a Wilcoxon rank-sum test to compare significant responder status using CA, EI, and lateral ventricle volume. A receiver operating characteristic analysis was employed to determine which volume measurement exhibited the strongest correlation with responder status. Determining the significant variables, a chi-square analysis was subsequently conducted.A significance threshold was set at P < 0.05. All our statistical evaluations were conducted in the Spyder environment, which is compatible with Python 3.10. RESULTS: There was a significant difference for responder status in EI and lateral ventricle volume. Evan index showing a statistic of 2.202 (P value = 0.02) and lateral ventricle volume demonstrating a statistic of 2.086 (P value = 0.03). Subsequent exploration using receiver operating characteristic analysis, with area under the curve of 0.71, identified 105.40 cm3 as the most robustly correlated volume threshold with responder status. CONCLUSIONS: The lateral ventricular volume demonstrates a stronger correlation with gait improvement compared to the CA or EI. These observations indicate that evaluating the lateral ventricle volume before lumbar puncture could serve as a predictor for gait response after lumbar puncture in individuals with normal pressure hydrocephalus.

3.
Sci Rep ; 14(1): 453, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172589

RESUMEN

Anterior Visual Pathway (aVP) damage may be linked to diverse inflammatory, degenerative and/or vascular conditions. Currently however, a standardized methodological framework for extracting MRI biomarkers of the aVP is not available. We used high-resolution, 3-D MRI data to generate a probabilistic anatomical atlas of the normal aVP and its intraorbital (iOrb), intracanalicular (iCan), intracranial (iCran), optic chiasm (OC), and tract (OT) subdivisions. We acquired 0.6 mm3 steady-state free-precession images from 24 healthy participants using a 3 T scanner. aVP masks were obtained by manual segmentation of each aVP subdivision. Mask straightening and normalization with cross-sectional area (CSA) preservation were obtained using scripts developed in-house. A probabilistic atlas ("aVP-24") was generated by averaging left and right sides of all subjects. Leave-one-out cross-validation with respect to interindividual variability was performed employing the Dice Similarity Index (DSI). Spatially normalized representations of the aVP subdivisions were generated. Overlapping CSA values before and after normalization demonstrate preservation of the aVP cross-section. Volume, length, CSA, and ellipticity index (ε) biometrics were extracted. The aVP-24 morphology followed previous descriptions from the gross anatomy. Atlas spatial validation DSI scores of 0.85 in 50% and 0.77 in 95% of participants indicated good generalizability across the subjects. The proposed MRI standardization framework allows for previously unavailable, geometrically unbiased biometric data of the entire aVP and provides the base for future spatial-resolved, group-level investigations.


Asunto(s)
Enfermedades Vasculares , Vías Visuales , Humanos , Imagen por Resonancia Magnética/métodos , Quiasma Óptico , Biometría , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Clin Med ; 11(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956138

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) comprises various rare clinical entities with brain iron overload as a common feature. Magnetic resonance imaging (MRI) allows diagnosis of this condition, and genetic molecular testing can confirm the diagnosis to better understand the intracellular damage mechanism involved. NBIA groups disorders include: pantothenate kinase-associated neurodegeneration (PKAN), mutations in the gene encoding pantothenate kinase 2 (PANK2); neuroferritinopathy, mutations in the calcium-independent phospholipase A2 gene (PLA2G6); aceruloplasminemia; and other subtypes with no specific clinical or MRI specific patterns identified. There is no causal therapy, and only symptom treatments are available for this condition. Promising strategies include the use of deferiprone (DFP), an orally administered bidentate iron chelator with the ability to pass through the blood-brain barrier. This is a prospective study analysis with a mean follow-up time of 5.5 ± 2.3 years (min-max: 2.4-9.6 years) to define DFP (15 mg/kg bid)'s efficacy and safety in the continuous treatment of 10 NBIA patients through clinical and neuroradiological evaluation. Our results show the progressive decrease in the cerebral accumulation of iron evaluated by MRI and a substantial stability of the overall clinical neurological picture without a significant correlation between clinical and radiological findings. Complete ferrochelation throughout the day appears to be of fundamental importance considering that oxidative damage is generated, above, all by non-transferrin-bound iron (NTBI); thus, we hypothesize that a (TID) administration regimen of DFP might better apply its chelating properties over 24 h with the aim to also obtain clinical improvement beyond the neuroradiological improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA