Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38061617

RESUMEN

Triclosan, a chlorinated biphenyl ether is widely used in industrial products and cosmetics due to its antibiotic activity. Although relatively levels of triclosan have been detected in aquatic ecosystems, limited information is available regarding the acute and chronic impacts of triclosan on aquatic invertebrates, especially planktonic crustaceans. In this study, we analyzed the acute (24 h) and chronic (14 days exposure across three generations) effects of different concentrations of triclosan [1/10 of the no observed effect concentration (NOEC), the NOEC, and 1/10 of the LC50] calculated from the 24 h acute toxicity value, on the water flea Moina macrocopa. In the acute exposure experiment, the 1/10 LC50 value of triclosan significantly reduced survival, feeding rate, thoracic limb activity, heart activity, and acetylcholinesterase activity. In response to the 1/10 LC50 value, intracellular reactive oxygen species increased along with elevated levels of malondialdehyde and glutathione. Enzymatic activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase were significantly increased by the 1/10 LC50 value, suggesting active protection of the antioxidant defense system against oxidative stress. Chronic exposure to the 1/10 NOEC and NOEC values revealed multigenerational adverse impacts of triclosan. The second generation was found to be the most sensitive to triclosan, as the NOEC value significantly reduced the survival rate, body length, and the number of neonates per brood, along with a delayed hatching period. Taken together, these results indicate that even sublethal levels of triclosan can have detrimental effects on the water flea population's maintenance through intergenerational toxicity.


Asunto(s)
Cladóceros , Triclosán , Contaminantes Químicos del Agua , Animales , Humanos , Recién Nacido , Triclosán/toxicidad , Acetilcolinesterasa , Ecosistema , Contaminantes Químicos del Agua/toxicidad
2.
Artículo en Inglés | MEDLINE | ID: mdl-36368506

RESUMEN

The presence and toxicity of waterborne diuron in aquatic environments pose a severe threat to non-target organisms. However, the chronic impact of diuron in marine fish has been poorly investigated. In this study, we report the chronic effects (30 and 60 days) of environmentally relevant concentrations of diuron (0.1, 1, and 10 µg L-1) on economically important marine fish, red seabream (Pagrus major), and black rockfish (Sebastes schlegelii) by evaluating several parameters, including hormone levels, immunity, hepatic function, and antioxidant defense. Significant decreases in 17ß-estradiol and 11-ketotestosterone levels and gonadosomatic index were observed on day 60 in fish exposed to 10 µg L-1 diuron. Parameters of immunity, such as alternative complement activity, lysozyme activity, and total immunoglobulin levels, were significantly lowered by 60-day exposure to 10 µg L-1 diuron in both fish. Significant decreases in the hepatic enzyme activities of alanine transaminase and aspartate transaminase were observed with an induction of cortisol on day 60 in fish exposed to 10 µg L-1 diuron. Intracellular malondialdehyde and glutathione levels were significantly increased by 10 µg L-1 diuron at day 60 with an increase in the enzymatic activities of catalase and superoxide dismutase. Overall, black rockfish were more sensitive to diuron than red seabream. These results suggest that consistent exposure to environmentally relevant concentrations of diuron is detrimental to the reproduction, immunity, and health of marine fish.


Asunto(s)
Diurona , Dorada , Animales , Diurona/toxicidad , Antioxidantes , Malondialdehído , Estradiol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA