Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
J Pediatr ; 272: 114101, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759778

RESUMEN

OBJECTIVE: To develop consensus on diagnostic criteria for LUMBAR syndrome, the association of segmental infantile hemangiomas that affect the Lower body with Urogenital anomalies, Ulceration, spinal cord Malformations, Bony defects, Anorectal malformations, Arterial anomalies and/or Renal anomalies. STUDY DESIGN: These diagnostic criteria were developed by an expert multidisciplinary and multi-institutional team based on analysis of peer-reviewed data, followed by electronic-Delphi consensus of a panel of 61 international pediatric specialists. RESULTS: After 2 Delphi rounds, a 92% or higher level of agreement was reached for each Delphi statement. 98% of panelists agreed with the diagnostic criteria, and 100% agreed the criteria would be useful in clinical practice. The diagnosis of LUMBAR requires the presence of a segmental, or patterned, infantile hemangioma of the lumbosacral, sacrococcygeal, or pelvic cutaneous regions plus one additional criterion of the urogenital, spinal, bony, anorectal, arterial, or renal organ systems. CONCLUSIONS: These diagnostic criteria will enhance clinical care by improving screening, detection, and overall awareness of this poorly understood neurocutaneous disorder. The criteria can be utilized by a wide variety of pediatric subspecialists. In addition, formal criteria will improve phenotypic uniformity among LUMBAR syndrome cohorts and a patient registry, allowing investigators to assess clinical features, long-term outcomes, and results of genetic sequencing in a standardized manner. Finally, these criteria will serve as a starting point for prospective studies to establish formal screening and management guidelines.

2.
Am J Med Genet A ; 194(3): e63416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37933701

RESUMEN

Schizophrenia (SCZ) is a well-studied neuropsychiatric condition that has been shown to have a high degree of genetic heritability. Still, little data on the specific genetic risk variants associated with the disease exists. Classification of the SCZ phenotype into SCZ-related endophenotypes is a promising methodology to parse out and elucidate the specific genetic risk variants for each. Here, we present a series of 17 previously reported individuals and a new proband with similar SCZ-related neuropsychiatric characteristics and shared brain imaging findings. Unsurprisingly, these individuals shared classic psychiatric features of SCZ. Interestingly, we also identified shared neuropsychiatric features in this series of individuals that had not been highlighted previously. A consistently decreased IQ, memory impairment, sleep and speech disturbances, and attention deficits were commonly reported findings. The brain imaging findings among these individuals also consistently showed posterior vermis predominant cerebellar hypoplasia (CBLH-V). Most individuals' diagnoses were initially described as Dandy-Walker malformation; however, our independent review of imaging suggests a more consistent pattern of posterior vermis predominant cerebellar hypoplasia rather than true Dandy-Walker malformation. While the specific genetic risk variants for this endophenotype are yet to be described, the aim of this paper is to present the shared neuropsychiatric features and consistent, symmetrical brain image findings which suggest that this subset of individuals comprises an endophenotype of SCZ with a high genetic solve rate.


Asunto(s)
Cerebelo/anomalías , Síndrome de Dandy-Walker , Malformaciones del Sistema Nervioso , Trastornos Psicóticos , Esquizofrenia , Humanos , Síndrome de Dandy-Walker/diagnóstico , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Cerebelo/diagnóstico por imagen , Discapacidades del Desarrollo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38146067

RESUMEN

Partial trisomy of the long arm of chromosome 17 (17q) is a rare but clinically recognized syndrome that involves facial dysmorphisms, skeletal abnormalities, and global developmental delay, as well as various reports of cardiovascular, renal, and central nervous system abnormalities. This report presents a novel neuroradiologic finding of diffuse enlarged, tortuous cortical veins with physiological antegrade flow in a child with a microduplication of the distal end of 17q. To our knowledge, this finding has not been described previously. Although the exact cause for the cortical vascular anomaly is currently unknown, this duplicated region contains genes of interest for future studies that focus on normal and abnormal angiogenesis.

4.
Res Sq ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37841849

RESUMEN

Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H (SMARCA5) or SNF2L (SMARCA1) ISWI-chromatin remodeling enzyme. Pathogenic variants in BPTF and SMARCA5 were previously implicated in NDDs. Here, we describe 40 individuals from 30 families with de novo or maternally inherited pathogenic variants in SMARCA1. This novel NDD was associated with mild to severe ID/DD, delayed or regressive speech development, and some recurrent facial dysmorphisms. Individuals carrying SMARCA1 loss-of-function variants exhibited a mild genome-wide DNA methylation profile and a high penetrance of macrocephaly. Genetic dissection of the NURF complex using Smarca1, Smarca5, and Bptfsingle and double mouse knockouts revealed the importance of NURF composition and dosage for proper forebrain development. Finally, we propose that genetic alterations affecting different NURF components result in a NDD with a broad clinical spectrum.

5.
Genet Med ; 25(8): 100856, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092537

RESUMEN

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Asunto(s)
Microftalmía , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinoides
6.
Proc Natl Acad Sci U S A ; 120(4): e2209983120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669109

RESUMEN

TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development.


Asunto(s)
Neocórtex , Animales , Humanos , Ratones , Células Ependimogliales , Ratones Noqueados
7.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36074901

RESUMEN

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Asunto(s)
Epilepsia , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Adenosina Trifosfato
8.
Am J Hum Genet ; 109(11): 2068-2079, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36283405

RESUMEN

Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Lisencefalia , Malformaciones del Sistema Nervioso , Humanos , Animales , Ratones , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenotipo , Malformaciones del Sistema Nervioso/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética
9.
Genet Med ; 24(10): 2065-2078, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35980381

RESUMEN

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Asunto(s)
Trastornos del Neurodesarrollo , Miosina Tipo IIB no Muscular , Actinas , Cilios/genética , Proteínas Hedgehog/genética , Humanos , Cadenas Pesadas de Miosina/genética , Trastornos del Neurodesarrollo/genética , Miosina Tipo IIB no Muscular/genética
10.
Brain ; 145(9): 3274-3287, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35769015

RESUMEN

Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.


Asunto(s)
Lisencefalia , Proteína Reelina , Adulto , Cerebelo/anomalías , Niño , Discapacidades del Desarrollo/genética , Humanos , Lisencefalia/complicaciones , Mutación , Malformaciones del Sistema Nervioso , Proteína Reelina/genética
11.
J Neurophysiol ; 128(1): 40-61, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583973

RESUMEN

We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Animales , Niño , Cricetinae , Cricetulus , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Canales de Potasio KCNQ , Ratones , Mutación Missense , Convulsiones
12.
Brain ; 145(3): 925-938, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35355055

RESUMEN

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Encéfalo/patología , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
13.
Eur J Paediatr Neurol ; 35: 147-152, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34731701

RESUMEN

Lissencephaly represents a spectrum of rare malformations of cortical development including agyria, pachygyria and subcortical band heterotopia. The progress in molecular genetics has led to identification of 31 lissencephaly-associated genes with the overall diagnostic yield over 80%. In this review, we focus on clinical and molecular diagnosis of lissencephaly and summarize the current knowledge on histopathological changes and their correlation with the MRI imaging. Additionally we provide the overview of clinical follow-up recommendations and available data on epilepsy management in patients with lissencephaly.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Epilepsia , Lisencefalia , Corteza Cerebral , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Humanos , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Imagen por Resonancia Magnética , Mutación
15.
Mol Cell ; 81(22): 4663-4676.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34637754

RESUMEN

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.


Asunto(s)
Encéfalo/metabolismo , Proteína de Unión a CREB/genética , Proteínas del Citoesqueleto/metabolismo , Proteína p300 Asociada a E1A/genética , Células Madre Embrionarias/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Cromatina/química , Femenino , Genómica , Células HEK293 , Heterocigoto , Humanos , Masculino , Ratones , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Activación Transcripcional
16.
Eur J Paediatr Neurol ; 35: 27-34, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34592643

RESUMEN

The increasing pace of gene discovery in the last decade has brought a major change in the way the genetic causes of brain malformations are being diagnosed. Unbiased genomic screening has gained the first place in the diagnostic protocol of a child with congenital (brain) anomalies and the detected variants are matched with the phenotypic presentation afterwards. This process is defined as "reverse phenotyping". Screening of DNA, through copy number variant analysis of microarrays and analysis of exome data on different platforms, obtained from the index patient and both parents has become a routine approach in many centers worldwide. Clinicians are used to multidisciplinary team interaction in patient care and disease management and this explains why the majority of research that has led to the discovery of new genetic disorders nowadays proceeds from clinical observations to genomic analysis and to data exchange facilitated by open access sharing databases. However, the relevance of multidisciplinary team interaction has not been object of systematic research in the field of brain malformations. This review will illustrate some examples of how diagnostically driven questions through multidisciplinary interaction, among clinical and preclinical disciplines, can be successful in the discovery of new genes related to brain malformations. The first example illustrates the setting of interaction among neurologists, geneticists and neuro-radiologists. The second illustrates the importance of interaction among clinical dysmorphologists for pattern recognition of syndromes with multiple congenital anomalies. The third example shows how fruitful it can be to step out of the "clinical comfort zone", and interact with basic scientists in applying emerging technologies to solve the diagnostic puzzles.


Asunto(s)
Anomalías Múltiples , Variaciones en el Número de Copia de ADN , Anomalías Múltiples/genética , Niño , Exoma , Estudios de Asociación Genética , Humanos , Secuenciación del Exoma
17.
Int J Pediatr Otorhinolaryngol ; 151: 110869, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34537546

RESUMEN

OBJECTIVES: Head and neck lymphatic malformations (HNLM) are caused by gain-of-function somatic mutations in PIK3CA. Acetylsalicylic acid (ASA/aspirin) is thought to limit growth in PIK3CA-mutated neoplasms through PI3K pathway suppression. We sought to determine if ASA could be beneficial for HNLM. METHODS: Retrospective case series of patients (0-18 years) offered ASA (3-5 mg/kg/day) for HNLM treatment (2010-2018). Clinical and treatment characteristics, patient-reported symptom improvement, medication tolerance, compliance, and complications were recorded. Treatment response was determined by change in patient/caregiver-reported symptoms, or HNLM size [complete (resolved), partial (decreased), or stable]. RESULTS: Fifty-three patients were offered ASA, 23 (43%) accepted (median age 10 years, IQR 6-14). Compared to patients who declined, patients receiving ASA were more likely to have extensive malformations: ex-utero intrapartum treatment procedure, bilateral malformations, oral cavity location, ≥2 invasive treatments, or tracheotomy (p < 0.05). All patients with tissue available had PIK3CA mutations (13/23). Treatment indications included oral pain/blebs (12, 52%), recurrent pain/swelling (6, 26%), or sudden/persistent swelling (5, 22%). Treatment plan was commonly one 81 mg tablet daily (19, 83%) for 3-12 months (8, 42%). Therapeutic adherence was reported by 18 patients (78%). Symptoms improved in 18 patients [78%; decreased pain (9, 39%) and swelling (8, 35%)]. Treatment resulted in partial (14, 61%) or complete response (4, 17%). Three patients developed oral bleb bleeding, which resolved with medication discontinuation. CONCLUSION: ASA seems to be a well-tolerated, low-risk medication for HNLM treatment. This pilot study suggests that it often improves symptoms and reduces HNLM size. Further prospective, randomized studies are warranted to comprehensively assess indications, safety, and efficacy. LEVEL OF EVIDENCE: Level 4.


Asunto(s)
Anomalías Linfáticas , Fosfatidilinositol 3-Quinasas , Aspirina/uso terapéutico , Niño , Humanos , Anomalías Linfáticas/tratamiento farmacológico , Anomalías Linfáticas/genética , Proyectos Piloto , Estudios Retrospectivos
19.
Am J Med Genet A ; 185(12): 3728-3739, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34346154

RESUMEN

Kinesin super family (KIF) genes encode motor kinesins, a family of evolutionary conserved proteins, involved in intracellular trafficking of various cargoes. These proteins are critical for various physiological processes including neuron function and survival, ciliary function and ciliogenesis, and cell-cycle progression. Recent evidence suggests that alterations in motor kinesin genes can lead to a variety of human diseases, including monogenic disorders. Neuropathies, impaired higher brain functions, structural brain abnormalities and multiple congenital anomalies (i.e., renal, urogenital, and limb anomalies) can result from pathogenic variants in many KIF genes. We expand the phenotype associated with KIF4A variants from developmental delay and intellectual disability with or without epilepsy to a congenital anomaly phenotype with hydrocephalus and various brain anomalies at the more severe end of phenotypic manifestations. Additional anomalies of the kidneys and urinary tract, congenital lymphedema, eye, and dental anomalies seem to be variably associated and overlap with clinical signs observed in other kinesinopathies. Caution still applies to missense variants, but hopefully, future work will further establish genotype-phenotype correlations in a larger number of patients and functional studies may give further insights into the complex function of KIF4A.


Asunto(s)
Anomalías Múltiples/genética , Encéfalo/metabolismo , Cinesinas/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Anomalías Múltiples/patología , Encéfalo/anomalías , Encéfalo/patología , Epilepsia/genética , Epilepsia/patología , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Anomalías Urogenitales/patología , Reflujo Vesicoureteral/patología
20.
Front Genet ; 12: 694312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413877

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA