Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Hum Brain Mapp ; 45(7): e26699, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726907

RESUMEN

With the steadily increasing abundance of longitudinal neuroimaging studies with large sample sizes and multiple repeated measures, questions arise regarding the appropriate modeling of variance and covariance. The current study examined the influence of standard classes of variance-covariance structures in linear mixed effects (LME) modeling of fMRI data from patients with pediatric mild traumatic brain injury (pmTBI; N = 181) and healthy controls (N = 162). During two visits, participants performed a cognitive control fMRI paradigm that compared congruent and incongruent stimuli. The hemodynamic response function was parsed into peak and late peak phases. Data were analyzed with a 4-way (GROUP×VISIT×CONGRUENCY×PHASE) LME using AFNI's 3dLME and compound symmetry (CS), autoregressive process of order 1 (AR1), and unstructured (UN) variance-covariance matrices. Voxel-wise results dramatically varied both within the cognitive control network (UN>CS for CONGRUENCY effect) and broader brain regions (CS>UN for GROUP:VISIT) depending on the variance-covariance matrix that was selected. Additional testing indicated that both model fit and estimated standard error were superior for the UN matrix, likely as a result of the modeling of individual terms. In summary, current findings suggest that the interpretation of results from complex designs is highly dependent on the selection of the variance-covariance structure using LME modeling.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adolescente , Niño , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Modelos Lineales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Función Ejecutiva/fisiología
2.
J Cereb Blood Flow Metab ; : 271678X241241895, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578669

RESUMEN

A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.

3.
Child Neuropsychol ; 30(2): 203-220, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36825526

RESUMEN

Cognitive impairment and post-concussive symptoms (PCS) represent hallmark sequelae of pediatric mild traumatic brain injury (pmTBI). Few studies have directly compared cognition as a function of PCS status longitudinally. Cognitive outcomes were therefore compared for asymptomatic pmTBI, symptomatic pmTBI, and healthy controls (HC) during sub-acute (SA; 1-11 days) and early chronic (EC; approximately 4 months) post-injury phases. We predicted worse cognitive performance for both pmTBI groups relative to HC at the SA visit. At the EC visit, we predicted continued impairment from the symptomatic group, but no difference between asymptomatic pmTBI and HCs. A battery of clinical (semi-structured interviews and self-report questionnaires) and neuropsychological measures were administered to 203 pmTBI and 139 HC participants, with greater than 80% retention at the EC visit. A standardized change method classified pmTBI into binary categories of asymptomatic or symptomatic based on PCS scores. Symptomatic pmTBI performed significantly worse than HCs on processing speed, attention, and verbal memory at SA visit, whereas lower performance was only present for verbal memory for asymptomatic pmTBI. Lower performance in verbal memory persisted for both pmTBI groups at the EC visit. Surprisingly, a minority (16%) of pmTBI switched from asymptomatic to symptomatic status at the EC visit. Current findings suggest that PCS and cognition are more closely coupled during the first week of injury but become decoupled several months post-injury. Evidence of lower performance in verbal memory for both asymptomatic and symptomatic pmTBI suggests that cognitive recovery may be a process separate from the resolution of subjective symptomology.


Asunto(s)
Conmoción Encefálica , Disfunción Cognitiva , Síndrome Posconmocional , Humanos , Niño , Conmoción Encefálica/complicaciones , Conmoción Encefálica/psicología , Síndrome Posconmocional/complicaciones , Síndrome Posconmocional/psicología , Cognición , Memoria , Disfunción Cognitiva/etiología , Pruebas Neuropsicológicas
4.
J Neurotrauma ; 41(1-2): 209-221, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725586

RESUMEN

Pediatric mild traumatic brain injury (pmTBI) has received increased public attention over the past decade, especially for children who experience persistent post-concussive symptoms (PCS). Common methods for obtaining pediatric PCS rely on both self- and parental report, exhibit moderate test-retest reliability, and variable child-parent agreement, and may yield high false positives. The current study investigated the impact of age and biological sex on PCS reporting (Post-Concussion Symptom Inventory) in patients with pmTBI (n = 286) at retrospective, 1 week, 4 months, and 1 year post-injury time points, as well as reported symptoms in healthy controls (HC; n = 218) at equivalent assessment times. HC and their parents reported higher PCS for their retrospective rating relative to the other three other study visits. Child-parent agreement was highest for female adolescents, but only approached acceptable ranges (≥ 0.75) immediately post-injury. Poor-to-fair child/parental agreement was observed for most other study visits for pmTBI and at all visits for HC. Parents rated female adolescents as being more symptomatic than their male counterparts in spite of small (pmTBI) or no (HC) sex-related differences in self-reported ratings, suggestive of a potential cultural bias in parental ratings. Test-retest reliability for self-report was typically below acceptable ranges for both pmTBI and HC groups, with reliability decreasing for HC and increasing for pmTBI as a function of time between visits. Parental test-retest reliability was higher for females. Although continued research is needed, current results support the use of child self-report over parental ratings for estimating PCS burden. Results also highlight the perils of relying on symptom self-report for diagnostic and prognostic purposes.


Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Adolescente , Humanos , Masculino , Niño , Femenino , Síndrome Posconmocional/diagnóstico , Estudios Retrospectivos , Reproducibilidad de los Resultados , Conmoción Encefálica/diagnóstico , Padres
5.
Neuroimage ; 285: 120470, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016527

RESUMEN

Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Humanos , Niño , Conmoción Encefálica/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética
6.
J Cereb Blood Flow Metab ; 44(1): 118-130, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37724718

RESUMEN

Dynamic changes in neurodevelopment and cognitive functioning occur during adolescence, including a switch from reactive to more proactive forms of cognitive control, including response inhibition. Pediatric mild traumatic brain injury (pmTBI) affects these cognitions immediately post-injury, but the role of vascular versus neural injury in cognitive dysfunction remains debated. This study consecutively recruited 214 sub-acute pmTBI (8-18 years) and age/sex-matched healthy controls (HC; N = 186), with high retention rates (>80%) at four months post-injury. Multimodal imaging (functional MRI during response inhibition, cerebral blood flow and cerebrovascular reactivity) assessed for pathologies within the neurovascular unit. Patients exhibited increased errors of commission and hypoactivation of motor circuitry during processing of probes. Evidence of increased/delayed cerebrovascular reactivity within motor circuitry during hypercapnia was present along with normal perfusion. Neither age-at-injury nor post-concussive symptom load were strongly associated with imaging abnormalities. Collectively, mild cognitive impairments and clinical symptoms may continue up to four months post-injury. Prolonged dysfunction within the neurovascular unit was observed during proactive response inhibition, with preliminary evidence that neural and pure vascular trauma are statistically independent. These findings suggest pmTBI is characterized by multifaceted pathologies during the sub-acute injury stage that persist several months post-injury.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Disfunción Cognitiva , Síndrome Posconmocional , Adolescente , Humanos , Niño , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/patología , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Cognición , Circulación Cerebrovascular/fisiología , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología
7.
Hum Brain Mapp ; 44(17): 6173-6184, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800467

RESUMEN

There is a growing body of research showing that cerebral pathophysiological processes triggered by pediatric mild traumatic brain injury (pmTBI) may extend beyond the usual clinical recovery timeline. It is paramount to further unravel these processes, because the possible long-term cognitive effects resulting from ongoing secondary injury in the developing brain are not known. In the current fMRI study, neural processes related to cognitive control were studied in 181 patients with pmTBI at sub-acute (SA; ~1 week) and early chronic (EC; ~4 months) stages post-injury. Additionally, a group of 162 age- and sex-matched healthy controls (HC) were recruited at equivalent time points. Proactive (post-cue) and reactive (post-probe) cognitive control were examined using a multimodal attention fMRI paradigm for either congruent or incongruent stimuli. To study brain network function, the triple-network model was used, consisting of the executive and salience networks (collectively known as the cognitive control network), and the default mode network. Additionally, whole-brain voxel-wise analyses were performed. Decreased deactivation was found within the default mode network at the EC stage following pmTBI during both proactive and reactive control. Voxel-wise analyses revealed sub-acute hypoactivation of a frontal area of the cognitive control network (left pre-supplementary motor area) during proactive control, with a reversed effect at the EC stage after pmTBI. Similar effects were observed in areas outside of the triple-network during reactive control. Group differences in activation during proactive control were limited to the visual domain, whereas for reactive control findings were more pronounced during the attendance of auditory stimuli. No significant correlations were present between task-related activations and (persistent) post-concussive symptoms. In aggregate, current results show alterations in neural functioning during cognitive control in pmTBI up to 4 months post-injury, regardless of clinical recovery. We propose that subacute decreases in activity reflect a general state of hypo-excitability due to the injury, while early chronic hyperactivation represents a compensatory mechanism to prevent default mode interference and to retain cognitive control.


Asunto(s)
Conmoción Encefálica , Trastornos del Conocimiento , Disfunción Cognitiva , Humanos , Niño , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Imagen por Resonancia Magnética , Cognición
8.
J Neurol ; 270(12): 5835-5848, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37594499

RESUMEN

OBJECTIVE: Brain age is increasingly being applied to the spectrum of brain injury to define neuropathological changes in conjunction with blood-based biomarkers. However, data from the acute/sub-acute stages of concussion are lacking, especially among younger cohorts. METHODS: Predicted brain age differences were independently calculated in large, prospectively recruited cohorts of pediatric concussion and matched healthy controls (total N = 446), as well as collegiate athletes with sport-related concussion and matched non-contact sport controls (total N = 184). Effects of repetitive head injury (i.e., exposure) were examined in a separate cohort of contact sport athletes (N = 82), as well as by quantifying concussion history through semi-structured interviews and years of contact sport participation. RESULTS: Findings of increased brain age during acute and sub-acute concussion were independently replicated across both cohorts, with stronger evidence of recovery for pediatric (4 months) relative to concussed athletes (6 months). Mixed evidence existed for effects of repetitive head injury, as brain age was increased in contact sport athletes, but was not associated with concussion history or years of contact sport exposure. There was no difference in brain age between concussed and contact sport athletes. Total tau decreased immediately (~ 1.5 days) post-concussion relative to the non-contact group, whereas pro-inflammatory markers were increased in both concussed and contact sport athletes. Anti-inflammatory markers were inversely related to brain age, whereas markers of axonal injury (neurofilament light) exhibited a trend positive association. CONCLUSION: Current and previous findings collectively suggest that the chronicity of brain age differences may be mediated by age at injury (adults > children), with preliminary findings suggesting that exposure to contact sports may also increase brain age.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Adulto , Humanos , Niño , Lactante , Traumatismos en Atletas/complicaciones , Conmoción Encefálica/diagnóstico , Encéfalo/diagnóstico por imagen , Cabeza , Biomarcadores , Atletas
9.
J Neurotrauma ; 40(19-20): 2205-2216, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37341029

RESUMEN

Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) are each leading causes of mortality and morbidity worldwide, and present additional treatment considerations when they are comorbid (TBI+HS) as a result of competing pathophysiological responses. The current study rigorously quantified injury biomechanics with high precision sensors and examined whether blood-based surrogate markers were altered in general trauma as well as post-neurotrauma. Eighty-nine sexually mature male and female Yucatan swine were subjected to a closed-head TBI+HS (40% of circulating blood volume; n = 68), HS only (n = 9), or sham trauma (n = 12). Markers of systemic (e.g., glucose, lactate) and neural functioning were obtained at baseline, and at 35 and 295 min post-trauma. Opposite and approximately twofold differences existed for both magnitude (device > head) and duration (head > device) of quantified injury biomechanics. Circulating levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase L1 (UCH-L1) demonstrated differential sensitivity for both general trauma (HS) and neurotrauma (TBI+HS) relative to shams in a temporally dynamic fashion. GFAP and NfL were both strongly associated with changes in systemic markers during general trauma and exhibited consistent time-dependent changes in individual sham animals. Finally, circulating GFAP was associated with histopathological markers of diffuse axonal injury and blood-brain barrier breach, as well as variations in device kinematics following TBI+HS. Current findings therefore highlight the need to directly quantify injury biomechanics with head mounted sensors and suggest that GFAP, NfL, and UCH-L1 are sensitive to multiple forms of trauma rather than having a single pathological indication (e.g., GFAP = astrogliosis).


Asunto(s)
Lesiones Traumáticas del Encéfalo , Choque Hemorrágico , Masculino , Femenino , Porcinos , Animales , Fenómenos Biomecánicos , Biomarcadores , Modelos Animales , Proteína Ácida Fibrilar de la Glía , Ubiquitina Tiolesterasa
10.
Neurology ; 100(5): e516-e527, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36522161

RESUMEN

BACKGROUND AND OBJECTIVES: The clinical and physiologic time course for recovery following pediatric mild traumatic brain injury (pmTBI) remains actively debated. The primary objective of the current study was to prospectively examine structural brain changes (cortical thickness and subcortical volumes) and age-at-injury effects. A priori study hypotheses predicted reduced cortical thickness and hippocampal volumes up to 4 months postinjury, which would be inversely associated with age at injury. METHODS: Prospective cohort study design with consecutive recruitment. Study inclusion adapted from American Congress of Rehabilitation Medicine (upper threshold) and Zurich Concussion in Sport Group (minimal threshold) and diagnosed by Emergency Department and Urgent Care clinicians. Major neurologic, psychiatric, or developmental disorders were exclusionary. Clinical (Common Data Element) and structural (3 T MRI) evaluations within 11 days (subacute visit [SA]) and at 4 months (early chronic visit [EC]) postinjury. Age- and sex-matched healthy controls (HC) to control for repeat testing/neurodevelopment. Clinical outcomes based on self-report and cognitive testing. Structural images quantified with FreeSurfer (version 7.1.1). RESULTS: A total of 208 patients with pmTBI (age = 14.4 ± 2.9; 40.4% female) and 176 HC (age = 14.2 ± 2.9; 42.0% female) were included in the final analyses (>80% retention). Reduced cortical thickness (right rostral middle frontal gyrus; d = -0.49) and hippocampal volumes (d = -0.24) observed for pmTBI, but not associated with age at injury. Hippocampal volume recovery was mediated by loss of consciousness/posttraumatic amnesia. Significantly greater postconcussive symptoms and cognitive deficits were observed at SA and EC visits, but were not associated with the structural abnormalities. Structural abnormalities slightly improved balanced classification accuracy above and beyond clinical gold standards (∆+3.9%), with a greater increase in specificity (∆+7.5%) relative to sensitivity (∆+0.3%). DISCUSSION: Current findings indicate that structural brain abnormalities may persist up to 4 months post-pmTBI and are partially mediated by initial markers of injury severity. These results contribute to a growing body of evidence suggesting prolonged physiologic recovery post-pmTBI. In contrast, there was no evidence for age-at-injury effects or physiologic correlates of persistent symptoms in our sample.


Asunto(s)
Conmoción Encefálica , Encefalopatía Traumática Crónica , Síndrome Posconmocional , Humanos , Femenino , Niño , Adolescente , Masculino , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Estudios Prospectivos , Sustancia Gris/diagnóstico por imagen , Síndrome Posconmocional/diagnóstico , Atrofia
11.
Brain ; 145(11): 4124-4137, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727944

RESUMEN

The underlying pathophysiology of paediatric mild traumatic brain injury and the time-course for biological recovery remains widely debated, with clinical care principally informed by subjective self-report. Similarly, clinical evidence indicates that adolescence is a risk factor for prolonged recovery, but the impact of age-at-injury on biomarkers has not been determined in large, homogeneous samples. The current study collected diffusion MRI data in consecutively recruited patients (n = 203; 8-18 years old) and age and sex-matched healthy controls (n = 170) in a prospective cohort design. Patients were evaluated subacutely (1-11 days post-injury) as well as at 4 months post-injury (early chronic phase). Healthy participants were evaluated at similar times to control for neurodevelopment and practice effects. Clinical findings indicated persistent symptoms at 4 months for a significant minority of patients (22%), along with residual executive dysfunction and verbal memory deficits. Results indicated increased fractional anisotropy and reduced mean diffusivity for patients, with abnormalities persisting up to 4 months post-injury. Multicompartmental geometric models indicated that estimates of intracellular volume fractions were increased in patients, whereas estimates of free water fractions were decreased. Critically, unique areas of white matter pathology (increased free water fractions or increased neurite dispersion) were observed when standard assumptions regarding parallel diffusivity were altered in multicompartmental models to be more biologically plausible. Cross-validation analyses indicated that some diffusion findings were more reproducible when ∼70% of the total sample (142 patients, 119 controls) were used in analyses, highlighting the need for large-sample sizes to detect abnormalities. Supervised machine learning approaches (random forests) indicated that diffusion abnormalities increased overall diagnostic accuracy (patients versus controls) by ∼10% after controlling for current clinical gold standards, with each diffusion metric accounting for only a few unique percentage points. In summary, current results suggest that novel multicompartmental models are more sensitive to paediatric mild traumatic brain injury pathology, and that this sensitivity is increased when using parameters that more accurately reflect diffusion in healthy tissue. Results also indicate that diffusion data may be insufficient to achieve a high degree of objective diagnostic accuracy in patients when used in isolation, which is to be expected given known heterogeneities in pathophysiology, mechanism of injury and even criteria for diagnoses. Finally, current results indicate ongoing clinical and physiological recovery at 4 months post-injury.


Asunto(s)
Conmoción Encefálica , Sustancia Blanca , Adolescente , Humanos , Niño , Conmoción Encefálica/patología , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión por Resonancia Magnética/métodos , Agua , Encéfalo/patología
12.
Neuropsychology ; 36(6): 565-577, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35377682

RESUMEN

OBJECTIVE: This study assessed classification accuracy of paper-and-pencil and computerized cognitive batteries at subacute (SA; 1-11 days) and early chronic (EC; ∼4 months) phases of pediatric mild traumatic brain injury (pmTBI). Two statistical approaches focused on single-subject performance (individual task scores, total impairments) were used to maximize clinical utility. METHOD: Two hundred thirty-five pmTBI and 169 healthy controls (HC) participants aged 8-18 were enrolled, with a subset (190 pmTBI; 160 HC) returning for the EC visit. The paper-and-pencil battery included several neuropsychological tests selected from recommended common data elements, whereas computerized testing was performed with the Cogstate Brief Battery. Hierarchical logistic regressions (base model: Parental education and premorbid reading abilities; full model: Base model and cognitive testing variables) were used to examine sensitivity/specificity, with diagnosis as the dependent variable. RESULTS: Number Sequencing and Cogstate One-Card Learning accuracy significantly predicted SA diagnosis (full model accuracy = 71.6%-71.7%, sensitivity = 80.6%-80.8%, specificity = 59.1%-59.6%), while only immediate recall was significant at EC visit (accuracy = 68.5%, sensitivity = 74.6%, specificity = 61.5%). Other measures (Letter Fluency, Cogstate Detection, and One-Card Learning accuracy) demonstrated higher proportions of impairment for pmTBI subacutely (pmTBI: 11.5%-19.8%; HC: 3.7%-6.1%) but did not improve classification accuracy. Evidence of multiple impairments across the entire testing battery significantly predicted diagnosis at both visits (full model accuracy = 66.2%-68.6%, sensitivity = 71.2%-78.9%, specificity = 54.3%-61.5%). CONCLUSIONS: Current results suggest similar modest diagnostic accuracy for computerized and paper-and-pencil batteries across multiple pmTBI phases. Moreover, findings suggest the total number of impairments may be more clinically useful than any single test or cognitive domain in terms of diagnostic accuracy at both assessment points. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Asunto(s)
Conmoción Encefálica , Disfunción Cognitiva , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico , Niño , Cognición , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Humanos , Memoria a Corto Plazo , Pruebas Neuropsicológicas , Sensibilidad y Especificidad
13.
Ann Biomed Eng ; 50(6): 728-739, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35366746

RESUMEN

Accurate characterization of head kinematics following an external blow represents a fundamental aspect of traumatic brain injury (TBI) research. The majority of previous large animal studies have assumed an equivalent relationship between the device delivering the impulsive load and subsequent head kinematics rather than performing direct measurement (sensors or videography). The current study therefore examined factors affecting device/head coupling kinematics in an acceleration TBI model. Experiment 1 indicated ~ 50% reduction in peak angular velocity for swine head relative to the device, with an approximate doubling in temporal duration. The peak angular velocity for the head was not significantly altered by variations in restraint device (straps vs. cables), animal positioning or body mass. In Experiment 2, reducing the impulsive load by 32% resulted in only a 14% reduction in angular velocity of the head (approximately 69% head/device coupling ratio), with more pronounced differences qualitatively observed for angular momentum. A temporal delay was identified in initial device/head coupling, potentially a result of soft tissue deformation. Finally, similar head kinematics were obtained regardless of mounting the sensor directly to the skull or through the scalp (Experiment 3). Current findings highlight the importance of direct measurement of head kinematics for future studies.


Asunto(s)
Aceleración , Lesiones Traumáticas del Encéfalo , Animales , Fenómenos Biomecánicos , Cabeza , Porcinos
14.
J Int Neuropsychol Soc ; 28(7): 687-699, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34376268

RESUMEN

OBJECTIVE: Retrospective self-report is typically used for diagnosing previous pediatric traumatic brain injury (TBI). A new semi-structured interview instrument (New Mexico Assessment of Pediatric TBI; NewMAP TBI) investigated test-retest reliability for TBI characteristics in both the TBI that qualified for study inclusion and for lifetime history of TBI. METHOD: One-hundred and eight-four mTBI (aged 8-18), 156 matched healthy controls (HC), and their parents completed the NewMAP TBI within 11 days (subacute; SA) and 4 months (early chronic; EC) of injury, with a subset returning at 1 year (late chronic; LC). RESULTS: The test-retest reliability of common TBI characteristics [loss of consciousness (LOC), post-traumatic amnesia (PTA), retrograde amnesia, confusion/disorientation] and post-concussion symptoms (PCS) were examined across study visits. Aside from PTA, binary reporting (present/absent) for all TBI characteristics exhibited acceptable (≥0.60) test-retest reliability for both Qualifying and Remote TBIs across all three visits. In contrast, reliability for continuous data (exact duration) was generally unacceptable, with LOC and PCS meeting acceptable criteria at only half of the assessments. Transforming continuous self-report ratings into discrete categories based on injury severity resulted in acceptable reliability. Reliability was not strongly affected by the parent completing the NewMAP TBI. CONCLUSIONS: Categorical reporting of TBI characteristics in children and adolescents can aid clinicians in retrospectively obtaining reliable estimates of TBI severity up to a year post-injury. However, test-retest reliability is strongly impacted by the initial data distribution, selected statistical methods, and potentially by patient difficulty in distinguishing among conceptually similar medical concepts (i.e., PTA vs. confusion).


Asunto(s)
Lesiones Traumáticas del Encéfalo , Síndrome Posconmocional , Adolescente , Amnesia Retrógrada , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico , Niño , Confusión , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos
15.
Crit Care ; 25(1): 428, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34915927

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) represent leading causes of trauma-induced mortality, especially when co-occurring in pre-hospital settings where standard therapies are not readily available. The primary objective of this study was to determine if 17α-ethinyl estradiol-3-sulfate (EE-3-SO4) increases survival, promotes more rapid cardiovascular recovery, or confers neuroprotection relative to Placebo following TBI + HS. METHODS: All methods were approved by required regulatory agencies prior to study initiation. In this fully randomized, blinded preclinical study, eighty (50% females) sexually mature (190.64 ± 21.04 days old; 28.18 ± 2.72 kg) Yucatan swine were used. Sixty-eight animals received a closed-head, accelerative TBI followed by removal of approximately 40% of circulating blood volume. Animals were then intravenously administered EE-3-SO4 formulated in the vehicle at 5.0 mg/mL (dosed at 0.2 mL/kg) or Placebo (0.45% sodium chloride solution) via a continuous pump (0.2 mL/kg over 5 min). Twelve swine were included as uninjured Shams to further characterize model pathology and replicate previous findings. All animals were monitored for up to 5 h in the absence of any other life-saving measures (e.g., mechanical ventilation, fluid resuscitation). RESULTS: A comparison of Placebo-treated relative to Sham animals indicated evidence of acidosis, decreased arterial pressure, increased heart rate, diffuse axonal injury and blood-brain barrier breach. The percentage of animals surviving to 295 min post-injury was significantly higher for the EE-3-SO4 (28/31; 90.3%) relative to Placebo (24/33; 72.7%) cohort. EE-3-SO4 also restored pulse pressure more rapidly post-drug administration, but did not confer any benefits in terms of shock index. Primary blood-based measurements of neuroinflammation and blood brain breach were also null, whereas secondary measurements of diffuse axonal injury suggested a more rapid return to baseline for the EE-3-SO4 group. Survival status was associated with biological sex (female > male), as well as evidence of increased acidosis and neurotrauma independent of EE-3-SO4 or Placebo administration. CONCLUSIONS: EE-3-SO4 is efficacious in promoting survival and more rapidly restoring cardiovascular homeostasis following polytraumatic injuries in pre-hospital environments (rural and military) in the absence of standard therapies. Poly-therapeutic approaches targeting additional mechanisms (increased hemostasis, oxygen-carrying capacity, etc.) should be considered in future studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Choque Hemorrágico , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Estradiol/análogos & derivados , Femenino , Hemodinámica , Masculino , Enfermedades Neuroinflamatorias , Resucitación , Choque Hemorrágico/tratamiento farmacológico , Porcinos
16.
Front Neurol ; 12: 658461, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177763

RESUMEN

Acceleration parameters have been utilized for the last six decades to investigate pathology in both human and animal models of traumatic brain injury (TBI), design safety equipment, and develop injury thresholds. Previous large animal models have quantified acceleration from impulsive loading forces (i.e., machine/object kinematics) rather than directly measuring head kinematics. No study has evaluated the reproducibility of head kinematics in large animal models. Nine (five males) sexually mature Yucatan swine were exposed to head rotation at a targeted peak angular velocity of 250 rad/s in the coronal plane. The results indicated that the measured peak angular velocity of the skull was 51% of the impulsive load, was experienced over 91% longer duration, and was multi- rather than uni-planar. These findings were replicated in a second experiment with a smaller cohort (N = 4). The reproducibility of skull kinematics data was mostly within acceptable ranges based on published industry standards, although the coefficients of variation (8.9% for peak angular velocity or 12.3% for duration) were higher than the impulsive loading parameters produced by the machine (1.1 vs. 2.5%, respectively). Immunohistochemical markers of diffuse axonal injury and blood-brain barrier breach were not associated with variation in either skull or machine kinematics, suggesting that the observed levels of variance in skull kinematics may not be biologically meaningful with the current sample sizes. The findings highlight the reproducibility of a large animal acceleration model of TBI and the importance of direct measurements of skull kinematics to determine the magnitude of angular velocity, refine injury criteria, and determine critical thresholds.

17.
Schizophr Res ; 229: 12-21, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33607607

RESUMEN

Patients with psychotic spectrum disorders (PSD) exhibit similar patterns of atrophy and microstructural changes that may be associated with common symptomatology (e.g., symptom burden and/or cognitive impairment). Gray matter concentration values (proxy for atrophy), fractional anisotropy (FA), mean diffusivity (MD), intracellular neurite density (Vic) and isotropic diffusion volume (Viso) measures were therefore compared in 150 PSD (schizophrenia, schizoaffective disorder, and bipolar disorder Type I) and 63 healthy controls (HC). Additional analyses evaluated whether regions showing atrophy and/or microstructure abnormalities were better explained by DSM diagnoses, symptom burden or cognitive dysfunction. PSD exhibited increased atrophy within bilateral medial temporal lobes and subcortical structures. Gray matter along the left lateral sulcus showed evidence of increased atrophy and MD. Increased MD was also observed in homotopic fronto-temporal regions, suggesting it may serve as a precursor to atrophic changes. Global cognitive dysfunction, rather than DSM diagnoses or psychotic symptom burden, was the best predictor of increased gray matter MD. Regions of decreased FA (i.e., left frontal gray and white matter) and Vic (i.e., frontal and temporal regions and along central sulcus) were also observed for PSD, but were neither spatially concurrent with atrophic regions nor associated with clinical symptoms. Evidence of expanding microstructural spaces in gray matter demonstrated the greatest spatial overlap with current and potentially future regions of atrophy, and was associated with cognitive deficits. These results suggest that this particular structural abnormality could potentially underlie global cognitive impairment that spans traditional diagnostic categories.


Asunto(s)
Trastornos Psicóticos , Sustancia Blanca , Atrofia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
18.
Am J Obstet Gynecol ; 224(5): 498.e1-498.e10, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33122028

RESUMEN

BACKGROUND: Prior study of patients with urgency urinary incontinence by functional magnetic resonance imaging showed altered function in areas of the brain associated with interoception and salience and with attention. Our randomized controlled trial of hypnotherapy for urgency urinary incontinence demonstrated marked improvement in urgency urinary incontinence symptoms at 2 months. A subsample of these women with urgency urinary incontinence underwent functional magnetic resonance imaging before and after treatment. OBJECTIVE: This study aimed to determine if hypnotherapy treatment of urgency urinary incontinence compared with pharmacotherapy was associated with altered brain activation or resting connectivity on functional magnetic resonance imaging. STUDY DESIGN: A subsample of women participating in a randomized controlled trial comparing hypnotherapy vs pharmacotherapy for treatment of urgency urinary incontinence was evaluated with functional magnetic resonance imaging. Scans were obtained pretreatment and 8 to 12 weeks after treatment initiation. Brain activation during bladder filling and resting functional connectivity with an empty and partially filled bladder were assessed. Brain regions of interest were derived from those previously showing differences between healthy controls and participants with untreated urgency urinary incontinence in our prior work and included regions in the interoceptive and salience, ventral attentional, and dorsal attentional networks. RESULTS: After treatment, participants in both groups demonstrated marked improvement in incontinence episodes (P<.001). Bladder-filling task functional magnetic resonance imaging data from the combined groups (n=64, 30 hypnotherapy, 34 pharmacotherapy) demonstrated decreased activation of the left temporoparietal junction, a component of the ventral attentional network (P<.01) compared with baseline. Resting functional connectivity differed only with the bladder partially filled (n=54). Compared with pharmacotherapy, hypnotherapy participants manifested increased functional connectivity between the anterior cingulate cortex and the left dorsolateral prefrontal cortex, a component of the dorsal attentional network (P<.001). CONCLUSION: Successful treatment of urgency urinary incontinence with both pharmacotherapy and hypnotherapy was associated with decreased activation of the ventral (bottom-up) attentional network during bladder filling. This may be attributable to decreased afferent stimuli arising from the bladder in the pharmacotherapy group. In contrast, decreased ventral attentional network activation associated with hypnotherapy may be mediated by the counterbalancing effects of the dorsal (top-down) attentional network.


Asunto(s)
Giro del Cíngulo/fisiopatología , Hipnosis , Corteza Prefrontal/fisiopatología , Incontinencia Urinaria de Urgencia/fisiopatología , Incontinencia Urinaria de Urgencia/terapia , Adulto , Anciano , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Vejiga Urinaria/fisiopatología , Incontinencia Urinaria de Urgencia/tratamiento farmacológico
19.
Shock ; 55(4): 554-562, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32881755

RESUMEN

INTRODUCTION: The pathology resulting from concurrent traumatic brain injury (TBI) and hemorrhagic shock (HS; TBI+HS) are leading causes of mortality and morbidity worldwide following trauma. However, the majority of large animal models of TBI+HS have utilized focal/contusional injuries rather than incorporating the types of brain trauma (closed-head injury caused by dynamic acceleration) that typify human injury. OBJECTIVE: To examine survival rates and effects on biomarkers from rotational TBI with two levels of HS. METHODS: Twenty-two sexually mature Yucatan swine (30.39 ±â€Š2.25 kg; 11 females) therefore underwent either Sham trauma procedures (n = 6) or a dynamic acceleration TBI combined with either 55% (n = 8) or 40% (n = 8) blood loss in this serial study. RESULTS: Survival rates were significantly higher for the TBI+40% (87.5%) relative to TBI+55% (12.5%) cohort, with the majority of TBI+55% animals expiring within 2 h post-trauma from apnea. Blood-based neural biomarkers and immunohistochemistry indicated evidence of diffuse axonal injury (increased NFL/Aß42), blood-brain barrier breach (increased immunoglobulin G) and inflammation (increased glial fibrillary acidic protein/ionized calcium-binding adaptor molecule 1) in the injured cohorts relative to Shams. Invasive hemodynamic measurements indicated increased shock index and decreased pulse pressure in both injury cohorts, with evidence of partial recovery for invasive hemodynamic measurements in the TBI+40% cohort. Similarly, although both injury groups demonstrated ionic and blood gas abnormalities immediately postinjury, metabolic acidosis continued to increase in the TBI+55% group ∼85 min postinjury. Somewhat surprisingly, both neural and physiological biomarkers showed significant changes within the Sham cohort across the multi-hour experimental procedure, most likely associated with prolonged anesthesia. CONCLUSION: Current results suggest the TBI+55% model may be more appropriate for severe trauma requiring immediate medical attention/standard fluid resuscitation protocols whereas the TBI+40% model may be useful for studies of prolonged field care.


Asunto(s)
Lesiones Traumáticas del Encéfalo/mortalidad , Choque Hemorrágico/mortalidad , Animales , Biomarcadores , Lesiones Traumáticas del Encéfalo/complicaciones , Modelos Animales de Enfermedad , Femenino , Masculino , Choque Hemorrágico/complicaciones , Tasa de Supervivencia , Porcinos
20.
J Int Neuropsychol Soc ; 27(7): 686-696, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33243310

RESUMEN

OBJECTIVE: This study aimed to examine the predictors of cognitive performance in patients with pediatric mild traumatic brain injury (pmTBI) and to determine whether group differences in cognitive performance on a computerized test battery could be observed between pmTBI patients and healthy controls (HC) in the sub-acute (SA) and the early chronic (EC) phases of injury. METHOD: 203 pmTBI patients recruited from emergency settings and 159 age- and sex-matched HC aged 8-18 rated their ongoing post-concussive symptoms (PCS) on the Post-Concussion Symptom Inventory and completed the Cogstate brief battery in the SA (1-11 days) phase of injury. A subset (156 pmTBI patients; 144 HC) completed testing in the EC (~4 months) phase. RESULTS: Within the SA phase, a group difference was only observed for the visual learning task (One-Card Learning), with pmTBI patients being less accurate relative to HC. Follow-up analyses indicated higher ongoing PCS and higher 5P clinical risk scores were significant predictors of lower One-Card Learning accuracy within SA phase, while premorbid variables (estimates of intellectual functioning, parental education, and presence of learning disabilities or attention-deficit/hyperactivity disorder) were not. CONCLUSIONS: The absence of group differences at EC phase is supportive of cognitive recovery by 4 months post-injury. While the severity of ongoing PCS and the 5P score were better overall predictors of cognitive performance on the Cogstate at SA relative to premorbid variables, the full regression model explained only 4.1% of the variance, highlighting the need for future work on predictors of cognitive outcomes.


Asunto(s)
Conmoción Encefálica , Discapacidades para el Aprendizaje , Síndrome Posconmocional , Conmoción Encefálica/complicaciones , Niño , Cognición , Humanos , Discapacidades para el Aprendizaje/diagnóstico , Discapacidades para el Aprendizaje/etiología , Estudios Longitudinales , Pruebas Neuropsicológicas , Síndrome Posconmocional/diagnóstico , Síndrome Posconmocional/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA