Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731597

RESUMEN

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Asunto(s)
Artemisia , Artemisininas , Fibroblastos , Fibrosis , Humanos , Artemisininas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Artemisia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Actinas/metabolismo , Actinas/genética , Artesunato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Arteméter/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
2.
Biochem Pharmacol ; 214: 115644, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321414

RESUMEN

Fibrosis is a pathological repair process common among organs, that responds to tissue damage by replacement with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs with a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may paint a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipercolesterolemia , Animales , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Fibrosis , Mamíferos
3.
Adv Sci (Weinh) ; 10(17): e2207396, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932884

RESUMEN

Cellular therapies show promise for treatment of fibrosis. A recent article presents a strategy and proof-of-concept for delivering stimulated cells to degrade hepatic collagen in vivo. A discussion is presented surrounding the strengths of this approach and the potential to generalize this strategy of optimizing cell sources and activation stimuli to treat other types of fibrosis.


Asunto(s)
Cicatriz , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Cirrosis Hepática/terapia , Colágeno/metabolismo
4.
Am J Pathol ; 193(5): 510-519, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740181

RESUMEN

Fibrotic skin conditions, such as hypertrophic and keloid scars, frequently result from injury to the skin and as sequelae to surgical procedures. The development of skin fibrosis may lead to patient discomfort, limitation in range of motion, and cosmetic disfigurement. Despite the frequency of skin fibrosis, treatments that seek to address the root causes of fibrosis are lacking. Much research into fibrotic pathophysiology has focused on dermal pathology, but less research has been performed to understand aberrations in fibrotic epidermis, leading to an incomplete understanding of dermal fibrosis. Herein, literature on occlusion, a treatment modality known to reduce dermal fibrosis, in part through accelerating wound healing and regulating aberrant epidermal inflammation that otherwise drives fibrosis in the dermis, is reviewed. The review focuses on epidermal-dermal crosstalk, which contributes to the development and maintenance of dermal fibrosis, an underemphasized interplay that may yield novel strategies for treatment if understood in more detail.


Asunto(s)
Cicatriz Hipertrófica , Queloide , Humanos , Cicatriz Hipertrófica/patología , Cicatriz Hipertrófica/terapia , Cicatrización de Heridas/fisiología , Piel/patología , Epidermis/patología , Queloide/patología , Queloide/terapia , Fibrosis
5.
J Invest Dermatol ; 143(9): 1724-1734.e15, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36804965

RESUMEN

The prevalence of fibrotic diseases and the lack of pharmacologic modalities to effectively treat them impart particular importance to the discovery of novel antifibrotic therapies. The repurposing of drugs with existing mechanisms of action and/or clinical data is a promising approach for the treatment of fibrotic diseases. One paradigm that pervades all fibrotic diseases is the pathological myofibroblast, a collagen-secreting, contractile mesenchymal cell that is responsible for the deposition of fibrotic tissue. In this study, we use a gene expression paradigm characteristic of activated myofibroblasts in combination with the Connectivity Map to select compounds that are predicted to reverse the pathological gene expression signature associated with the myofibroblast and thus contain the potential for use as antifibrotic compounds. We tested a small list of these compounds in a first-pass screen, applying them to fibroblasts, and identified the retinoic acid receptor agonist Ch55 as a potential hit. Further investigation exhibited and elucidated the antifibrotic effects of Ch55 in vitro as well as showing antiscarring activity upon intradermal application in a preclinical rabbit ear hypertrophic scar model. We hope that similar predictions to uncover antiscarring compounds may yield further preclinical and ultimately clinical success.


Asunto(s)
Miofibroblastos , Receptores de Ácido Retinoico , Animales , Conejos , Receptores de Ácido Retinoico/metabolismo , Miofibroblastos/patología , Fibroblastos/metabolismo , Colágeno/metabolismo , Fibrosis , Dermis/patología
6.
Clin Exp Pharmacol Physiol ; 50(3): 238-246, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36414819

RESUMEN

Chronic or delayed healing wounds constitute an ever-increasing burden on healthcare providers and patients alike. Thus, therapeutic modalities that are tailored to particular deficiencies in the delayed wound healing response are of critical importance to improve clinical outcomes. Human amnion-derived viable and devitalized allografts have demonstrated clinical efficacy in promoting the closure of delayed healing wounds, but the mechanisms responsible for this efficacy and the specific wound healing processes modulated by these tissues are not fully understood. Here, we utilized a diabetic murine excisional wound model in which healing is driven by granulation and re-epithelialization, and we applied viable (vHAMA) or devitalized (dHAMA) amnion-derived allografts to the wound bed in order to determine their effects on wound healing processes. Compared to control wounds that were allowed to heal in the absence of treatment, wounds to which vHAMA or dHAMA were applied demonstrated enhanced deposition of granulation tissue accompanied by increased cellular proliferation and increased de novo angiogenesis, while vHAMA-treated wounds also demonstrated accelerated re-epithelialization. Taken together, these data suggest that both vHAMA and dHAMA facilitate wound healing through promoting processes critical to granulation tissue formation. Further understanding of the cellular and tissue mechanisms underlying the effects of tissue-derived matrices on wound healing will enable tailored prescription of their use in order to maximize clinical benefit.


Asunto(s)
Amnios , Cicatrización de Heridas , Humanos , Ratones , Animales , Tejido de Granulación , Proliferación Celular
7.
J Cosmet Dermatol ; 22(2): 534-541, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35665590

RESUMEN

BACKGROUND: Hypertrophic scars (HTS) result from injury to the skin and represent a clinical burden with limited treatment options. Previously, we demonstrated that statin drugs could attenuate HTS formation, but convenient topical delivery and retention of these drugs at the wound site remains a challenge. AIMS: Here, we aimed to develop a topical cream formulation that can deliver statin drugs simply and conveniently to reduce scar hypertrophy. METHODS: We formulated creams containing 10% pravastatin, 2% simvastatin, and 10% simvastatin. We tested these creams for their ability to reduce scar hypertrophy and attenuate dermal fibrosis in a clinically relevant HTS wound model performed in rabbit ear skin. We also monitored trans-epidermal water loss (TEWL) over the course of wound healing in order to understand the effects of statin treatment on epidermal barrier recovery. RESULTS: Of the three creams formulated, only application of 10% simvastatin cream significantly attenuated hypertrophy of resultant scars compared with vehicle cream application. Application of 10% simvastatin cream resulted in a decrease in macrophage and myofibroblast density at post-operative day 28 (POD28) harvest. Application of 10% simvastatin cream resulted in visible symptoms of dryness and increased TEWL at POD28, but subsequent withdrawal of statin cream treatment resulted in rapid alleviation of dryness and decrease in TEWL back to normal levels. CONCLUSIONS: Our data demonstrate that topical administration of 10% simvastatin cream antagonizes dermal fibrosis and reduces hypertrophy in an HTS model, and withdrawal of the cream enables recovery of epidermal barrier and resolution of skin dryness.


Asunto(s)
Cicatriz Hipertrófica , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Conejos , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/etiología , Cicatriz Hipertrófica/patología , Simvastatina/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Piel , Hipertrofia/patología
8.
Wound Repair Regen ; 30(5): 541-545, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35918300

RESUMEN

Infection is a major source of complications in delayed diabetic wound healing. Increased understanding of differential bacterial responses to diabetic wounds will enable us to better understand chronic wound pathogenesis. Here we create delayed-healing wounds infected with Staphylococcus aureus in non-diabetic and diabetic mice and used RNA-seq to compare bacterial gene expression profiles 3 or 7 days after infection. Analysis at day 3 demonstrated substantial transcriptomic differences between bacteria colonising non-diabetic and diabetic wound beds. Most of these transcriptional differences resolved by day 7, suggesting normalisation of many bacterial phenotypes later in the diabetic wound healing process. Lingering differentially expressed genes at day 7 were enriched for genes related to carbohydrate metabolism, which includes genes of the lac operon, and capsular polysaccharide synthesis, which includes the cap8 locus. These data encourage further research into host-pathogen interactions in wound healing and how they influence differential outcomes in the diabetic wound environment.


Asunto(s)
Diabetes Mellitus Experimental , Infecciones Estafilocócicas , Infección de Heridas , Animales , Bacterias , Ratones , Staphylococcus aureus , Transcriptoma , Cicatrización de Heridas/genética , Infección de Heridas/genética , Infección de Heridas/microbiología
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166482, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35803527

RESUMEN

Damage to epidermis results in loss of barrier function and resultant pathological inflammatory signaling, triggering further damage to the skin. Here we investigate transcriptomic datasets generated from varied skin pathologies associated with disrupted epidermis and pinpoint CD14/S100 signaling as a conserved pathway upregulated in dermatopathologies characterized by a compromised epidermal barrier. We show that dermatitic and fibrotic tissues of humans and mouse models, which are associated with compromised epidermal barrier, demonstrate upregulation of CD14 and S100 proteins, damage-associated molecular patterns (DAMPs), in the epidermis. In vitro stratified keratinocyte cultures exposed to reduced hydration conditions show upregulated CD14/S100 family genes and pro-inflammatory gene expression, as well as decreased barrier gene expression. Knockdown and overexpression of CD14 in stratified keratinocyte cultures suppresses and induces expression, respectively, of S100 family genes and CXCL8. Taken together, these data suggest that upregulation of CD14 and/or S100 family genes in pathological epidermis results in potentiated inflammatory signaling, leading to diminished epidermal barrier function that may yield further inflammation. Future strategies to target CD14 may be utilized to dampen the response to epithelial injury for conditions of the skin and other organs.


Asunto(s)
Citocinas , Epidermis , Receptores de Lipopolisacáridos , Alarminas , Animales , Citocinas/metabolismo , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Humanos , Inflamación/metabolismo , Queratinocitos/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Ratones , Proteínas S100/genética , Proteínas S100/metabolismo
11.
J Mol Med (Berl) ; 100(6): 847-860, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35484303

RESUMEN

Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Citocinas/metabolismo , Fibrosis , Humanos
12.
Adv Wound Care (New Rochelle) ; 11(3): 150-162, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34841897

RESUMEN

Significance: Scar formation is a natural result of mammalian wound healing. In humans and other mammals, however, deep dermal wounds and thermal injuries often result in formation of hypertrophic scars, leading to substantial morbidity and lending great importance to development of therapeutic modalities for burn scars. Clinical Issues: Thus, preclinical burn wound models that adequately simulate processes underlying human burn-induced wound healing, particularly those processes leading to chronic inflammation and development of hypertrophic scars, are critical to developing further treatment paradigms for clinical use. Approach: In this study, we review literature describing various burn models, focusing on their characteristics and the functional readouts that lead to generation of useful data. We also briefly discuss recent work using human ex vivo skin culture as an alternative to animal models, as well as our own development of rabbit ear wound models for burn scars, and assess the pros and cons of these models compared to other models. Future Direction: Understanding of the strengths and weaknesses of preclinical burn wound models will enable choice of the most appropriate wound model to answer particular clinically relevant questions, furthering research aimed at treating burn scars.


Asunto(s)
Quemaduras , Cicatriz Hipertrófica , Animales , Quemaduras/complicaciones , Quemaduras/terapia , Cicatriz Hipertrófica/etiología , Modelos Animales de Enfermedad , Conejos , Piel/patología , Cicatrización de Heridas
13.
Plast Reconstr Surg ; 148(2): 287-298, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34398081

RESUMEN

BACKGROUND: Women with cosmetic breast implants have significantly lower rates of subsequent breast cancer than the general population (relative risk, 0.63; 95 percent CI, 0.56 to 0.71). The authors hypothesize that breast implant-induced local inflammation stimulates immunosurveillance recognition of breast tumor antigen. METHODS: Sera were collected from two cohorts of healthy women: women with long-term breast implants (i.e., breast implants for >6 months) and breast implant-naive women. Antibody responses to breast tumor antigens were tested by enzyme-linked immunosorbent assay and compared between cohorts by unpaired t test. Of the implant-naive cohort, nine women underwent breast augmentation, and antibody responses before and after implant placement were compared by paired t test. RESULTS: Sera were collected from 104 women: 36 (34.6 percent) long-term breast implants and 68 (65.4 percent) implant-naive women. Women with long-term breast implants had higher antibody responses than implant-naive women to mammaglobin-A (optical density at 450 nm, 0.33 versus 0.22; p = 0.003) and mucin-1 (optical density at 450 nm, 0.42 versus 0.34; p = 0.02). There was no difference in antibody responses to breast cancer susceptibility gene 2, carcinoembryonic antigen, human epidermal growth factor receptor-2, or tetanus. Nine women with longitudinal samples preoperatively and 1 month postoperatively demonstrated significantly elevated antibody responses following implant placement to mammaglobin-A (mean difference, 0.13; p = 0.0002) and mucin-1 (mean difference 0.08; p = 0.02). There was no difference in postimplant responses to other breast tumor antigens, or tetanus. CONCLUSIONS: Women with long-term breast implants have higher antibody recognition of mammaglobin-A and mucin-1. This study provides the first evidence of implant-related immune responses to breast cancer antigens. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Asunto(s)
Anticuerpos Antineoplásicos/sangre , Implantación de Mama/instrumentación , Implantes de Mama , Neoplasias de la Mama/prevención & control , Vigilancia Inmunológica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Neoplasias de la Mama/inmunología , Estudios de Casos y Controles , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Femenino , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Pruebas Serológicas/estadística & datos numéricos , Geles de Silicona , Adulto Joven
14.
Cell Mol Life Sci ; 78(14): 5469-5488, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34100980

RESUMEN

Within an articulately characterized family of ion channels, the voltage-gated sodium channels, exists a black sheep, SCN7A (Nax). Nax, in contrast to members of its molecular family, has lost its voltage-gated character and instead rapidly evolved a new function as a concentration-dependent sensor of extracellular sodium ions and subsequent signal transducer. As it deviates fundamentally in function from the rest of its family, and since the bulk of the impressive body of literature elucidating the pathology and biochemistry of voltage-gated sodium channels has been performed in nervous tissue, reports of Nax expression and function have been sparse. Here, we investigate available reports surrounding expression and potential roles for Nax activity outside of nervous tissue. With these studies as justification, we propose that Nax likely acts as an early sensor that detects loss of tissue homeostasis through the pathological accumulation of extracellular sodium and/or through endothelin signaling. Sensation of homeostatic aberration via Nax then proceeds to induce pathological tissue phenotypes via promotion of pro-inflammatory and pro-fibrotic responses, induced through direct regulation of gene expression or through the generation of secondary signaling molecules, such as lactate, that can operate in an autocrine or paracrine fashion. We hope that our synthesis of much of the literature investigating this understudied protein will inspire more research into Nax not simply as a biochemical oddity, but also as a potential pathophysiological regulator and therapeutic target.


Asunto(s)
Fibrosis/fisiopatología , Homeostasis , Inflamación/fisiopatología , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Humanos , Transducción de Señal , Canales de Sodio Activados por Voltaje/genética
15.
Acta Pharm Sin B ; 11(2): 322-339, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643815

RESUMEN

Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.

16.
Exp Cell Res ; 400(2): 112512, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33545130

RESUMEN

Since chronic, non-healing wounds represent an increasing source of economic and temporal burden for patients who suffer from them and healthcare professionals that treat them, therapeutic modalities that promote closure of delayed and non-healing wounds are of utmost importance. Recent clinical results of allografts derived from amnion and chorion placental layers encourage further investigation of the mechanisms underlying clinical efficacy of these products for treatment of wounds. Here, we utilized a diabetic murine splinted excisional wound model to investigate the effects of a dehydrated human amnion/chorion-derived allograft (dHACA) on delayed wound healing, as well as the effects of dehydrated allograft derived solely from amnion tissue of the same donor. We examined wound healing by histological endpoint analysis, and we assessed other parameters relevant to functional wound healing in the wound bed including angiogenesis, macrophage phenotypes, proliferative activity, and gene expression. Herein we demonstrate that application of dHACA to a murine diabetic model of delayed wound progression results in better macroscale wound resolution outcomes, including rate of closure, compared to unaided wound progression, while dehydrated human amnion allograft (dHAA) fails to improve outcomes. Improved gross wound resolution observed with dHACA was accompanied by increased granulation tissue formation, proliferation and vascular ingrowth observed in the wound bed, early macrophage polarization towards anti-inflammatory phenotypes, and downregulation of pro-fibrotic gene expression. Overall, our data suggest that improvements in the rates of delayed wound closure observed from combined amnion/chorion allografts are associated with modulation of critical cellular and tissue processes commonly found to be dysregulated in delayed healing wounds, including proliferation, vascularization, inflammation, and re-epithelialization.


Asunto(s)
Amnios/trasplante , Corion/trasplante , Cicatrización de Heridas , Heridas y Lesiones/terapia , Aloinjertos , Amnios/citología , Animales , Corion/citología , Deshidratación , Femenino , Humanos , Ratones , Embarazo , Trasplante de Células Madre
17.
Cytotherapy ; 23(8): 672-676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33423866

RESUMEN

BACKGROUND AIMS: The treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood. METHODS: The authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure. RESULTS: The authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism. CONCLUSIONS: These data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.


Asunto(s)
Dermis Acelular , Diabetes Mellitus , Aloinjertos , Animales , Humanos , Ratones , Repitelización , Cicatrización de Heridas
18.
Wound Repair Regen ; 29(2): 306-315, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33378794

RESUMEN

Mammalian wound healing is a carefully orchestrated process in which many cellular and molecular effectors respond in concert to perturbed tissue homeostasis in order to close the wound and re-establish the skin barrier. The roles of many of these molecular effectors, however, are not entirely understood. Our lab previously demonstrated that the atypical sodium channel Nax (encoded by Scn7a) responds to wound-induced epidermal dehydration, resulting in molecular cascades that drive pro-inflammatory signaling. Acute inhibition of Nax was sufficient to attenuate dermatopathological symptoms in models of hypertrophic scar and dermatitis. To date, however, the role of Nax in excisional wound healing has not been demonstrated. Here we report development of a knockout mouse that lacks expression of functional Nax , and we demonstrate that lack of functional Nax results in deficient wound healing in a murine splinted excisional wound healing model. This deficiency in wound healing was reflected in impaired re-epithelialization and decreased keratinocyte proliferation, a finding which was further supported by decreased proliferation upon Nax knockdown in HaCaT cells in vitro. Defective wound healing was observed alongside increased expression of inflammatory genes in the wound epidermis of Nax -/- mice, suggesting that mice lacking functional Nax retain the ability to undergo skin inflammation. Our observations here motivate further investigation into the roles of Nax in wound healing and other skin processes.


Asunto(s)
Repitelización , Cicatrización de Heridas , Animales , Ratones , Ratones Noqueados , Piel , Canales de Sodio , Cicatrización de Heridas/genética
19.
Plast Reconstr Surg ; 146(1): 43e-53e, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32590650

RESUMEN

BACKGROUND: Skeletal muscle trauma can produce grave functional deficits, but therapeutic options remain limited. The authors studied whether a decellularized skeletal muscle scaffold would provide benefits in inducing skeletal muscle regeneration over acellular dermal matrices. METHODS: Eighty-two rat muscle defects were surgically created and assigned to no intervention or implantation of AlloDerm, Strattice, decellularized rat muscle, or decellularized rat dermis to 30 or 60 days. Decellularized rat muscle and dermis were prepared using a negative pressure-assisted protocol. Assessment for cellularity, neovascularization, myogenesis, inflammation and fibrosis were done histologically and by polymerase chain reaction. RESULTS: Histology showed relative hypercellularity of AlloDerm (p < 0.003); Strattice appeared encapsulated. Immunofluorescence for CD31 and myosin heavy chain in decellularized rat muscle revealed dense microvasculature and peripheral islands of myogenesis. MyoD expression in muscle scaffolds was 23-fold higher than in controls (p < 0.01). Decellularized rat muscle showed no up-regulation of COX-2 (p < 0.05), with less expression than decellularized rat dermis and Strattice (p < 0.002). Decellularized rat muscle scaffolds expressed tumor necrosis factor-α less than Strattice, AlloDerm, and decellularized rat dermis (p < 0.01); collagen-1a less than decellularized rat dermis and Strattice (p < 0.04); α-smooth muscle actin 7-fold less than AlloDerm (p = 0.04); and connective tissue growth factor less than Strattice, AlloDerm, and decellularized rat dermis (p < 0.02). CONCLUSION: Decellularized muscle matrix appears to reduce inflammation and fibrosis in an animal muscle defect as compared with dermal matrices and promotes greater expression of myocyte differentiation-inducing genes.


Asunto(s)
Dermis Acelular , Músculo Esquelético , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Modelos Animales de Enfermedad , Masculino , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Ratas , Ratas Sprague-Dawley , Cicatrización de Heridas
20.
Wound Repair Regen ; 28(4): 460-469, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32428986

RESUMEN

Hypertrophic scar is an important clinical problem with limited therapeutic options. Aside from their roles as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, statins have also been demonstrated to decrease scarring by reducing connective tissue growth factor (CTGF) expression. However, poor penetrative ability limits their utility as topical treatments for hypertrophic scar. Here, we aim to develop novel statin formulations using liposomes to enhance dermal penetrative ability and to evaluate their efficacy against formation of hypertrophic scar utilizing our validated rabbit ear hypertrophic scar model. Liposomal simvastatin or pravastatin were compounded using a novel, flexible liposomal formulation and applied topically to rabbit ear hypertrophic scars daily from postoperation day (POD) 14 until POD 25. Scar color, including erythema and melanin, was measured using reflectance spectrophotometry on POD 28, and scar tissue was harvested for evaluation of scar elevation index as well as gene and protein expression. Human foreskin fibroblasts were also treated with statin formulations and CCN2 expression was determined by quantitative PCR. Both simvastatin and pravastatin were efficiently encapsulated in liposomes, forming nanometer-scale particles possessing highly negative charges. Topical treatment with liposomal simvastatin and pravastatin at 6.5% concentration significantly reduced scar elevation index and decreased type I/III collagen content and myofibroblast persistence in the wound. The erythema/vascularity of scars was reduced by liposomal statin treatment, with concomitant decrease of CD31 expression as measured histologically. Expression levels of transcripts encoding CTGF, collagen I, and collagen III collagen in scar tissue were also decreased by liposomal pravastatin treatment, as were myofibroblast persistence and the type I/III collagen ratio as assessed by immunofluorescence and picrosirus red staining, respectively. Treatment of human foreskin fibroblasts with simvastatin or with liposome-encapsulated pravastatin resulted in decreased expression of transcript encoding CTGF. Overall, our novel statin formulations encapsulated in liposomes were successfully delivered through topical application, significantly reducing hypertrophic scarring in a rabbit ear model.


Asunto(s)
Cicatriz Hipertrófica/metabolismo , Fibroblastos/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Piel/metabolismo , Animales , Cicatriz Hipertrófica/patología , Cicatriz Hipertrófica/prevención & control , Colágeno Tipo I/efectos de los fármacos , Colágeno Tipo I/genética , Colágeno Tipo III/efectos de los fármacos , Colágeno Tipo III/genética , Factor de Crecimiento del Tejido Conjuntivo/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/genética , Oído Externo/lesiones , Oído Externo/metabolismo , Oído Externo/patología , Eritema , Fibroblastos/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Técnicas In Vitro , Liposomas , Melaninas , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Pravastatina/administración & dosificación , Pravastatina/farmacología , Conejos , Simvastatina/administración & dosificación , Simvastatina/farmacología , Piel/lesiones , Piel/patología , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA