Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Nanobiotechnology ; 15(1): 62, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28877692

RESUMEN

BACKGROUND: The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface. RESULTS: Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions. CONCLUSIONS: We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine.


Asunto(s)
Antígenos de Protozoos/uso terapéutico , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Nanopartículas/uso terapéutico , Plasmodium falciparum/inmunología , Antígeno Nuclear de Célula en Proliferación/uso terapéutico , Proteínas Protozoarias/uso terapéutico , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Humanos , Inmunización , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Nanopartículas/química , Plasmodium falciparum/química , Plasmodium falciparum/genética , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/inmunología , Dominios Proteicos , Ingeniería de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
2.
J Nanobiotechnology ; 13: 73, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26498651

RESUMEN

BACKGROUND: Various supra-molecular structures form by self-assembly of proteins in a symmetric fashion. Examples of such structures are viruses, some bacterial micro-compartments and eukaryotic vaults. Peptide/protein-based nanoparticles are emerging in synthetic biology for a variety of biomedical applications, mainly as drug targeting and delivery systems or as vaccines. Our self-assembling peptide nanoparticles (SAPNs) are formed by a single peptide chain that consists of two helical coiled-coil segments connected by a short linker region. One helix is forming a pentameric coiled coil while the other is forming a trimeric coiled coil. RESULTS: Here, we were studying in vitro and in silico the effect of the chain length and of point mutations near the linker region between the pentamer and the trimer on the self-assembly of the SAPNs. 60 identical peptide chains co-assemble to form a spherical nanoparticle displaying icosahedral symmetry. We have stepwise reduced the size of the protein chain to a minimal chain length of 36 amino acids. We first used biochemical and biophysical methods on the longer constructs followed by molecular dynamics simulations to study eleven different smaller peptide constructs. We have identified one peptide that shows the most promising mini-nanoparticle model in silico. CONCLUSIONS: An approach of in silico modeling combined with in vitro testing and verification yielded promising peptide designs: at a minimal chain length of only 36 amino acids they were able to self-assemble into proper nanoparticles. This is important since the production cost increases more than linearly with chain length. Also the size of the nanoparticles is significantly smaller than 20 nm, thus reducing the immunogenicity of the particles, which in turn may allow to use the SAPNs as drug delivery systems without the risk of an anaphylactic shock.


Asunto(s)
Nanopartículas/química , Péptidos/química , Secuencia de Aminoácidos , Fenómenos Biofísicos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Nanopartículas/ultraestructura
3.
Nanomedicine ; 11(7): 1705-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26051652

RESUMEN

Successful vaccine development remains a huge challenge for infectious diseases such as malaria, HIV and influenza. As a novel way to present antigenic epitopes to the immune system, we have developed icosahedral self-assembling protein nanoparticles (SAPNs) to serve as a prototypical vaccine platform for infectious diseases. Here we examine some biophysical factors that affect the self-assembly of these nanoparticles, which have as basic building blocks coiled-coil oligomerization domains joined by a short linker region. Relying on in silico computer modeling predictions, we selected five different linker regions from the RCSB protein database that connect oligomerization domains, and then further studied the self-assembly and stability of in vitro produced nanoparticles through biophysical characterization of formed particles. One design in particular, T2i88, revealed excellent self-assembly and homogeneity thus paving the way toward a more optimized nanoparticle for vaccine applications. FROM THE CLINICAL EDITOR: Despite the widespread use of vaccines worldwide, successful development of vaccines against some diseases remains a challenge still. In this article, the authors investigated the physic-chemical and biological properties of icosahedral self-assembling protein nanoparticles (SAPNs), which mimic viral particles, in order to utilize this technology as potential platform for future design of vaccines.


Asunto(s)
Nanopartículas/uso terapéutico , Proteínas/inmunología , Vacunas/inmunología , Simulación por Computador , Bases de Datos de Proteínas , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Humanos , Gripe Humana/inmunología , Gripe Humana/prevención & control , Malaria/inmunología , Malaria/prevención & control , Proteínas/química , Proteínas/uso terapéutico , Vacunas/uso terapéutico
4.
Methods ; 60(3): 242-7, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23548672

RESUMEN

There are many ways to present antigens to the immune system. We have used a repetitive antigen display technology that relies on the self-assembly of 60 protein chains into a spherical self-assembling protein nanoparticle (SAPN) to develop a vaccine against Plasmodium falciparum malaria. The protein sequence contains selected B- and T-cell epitopes of the circumsporozoite protein of P. falciparum (PfCSP) and, when assembled into a nanoparticle induces strong, long-lived and protective immune responses against the PfCSP. Here we describe the conditions needed for promoting self-assembly of a P. falciparum vaccine nanoparticle, PfCSP-KMY-SAPN, and note pitfalls that may occur when determining conditions for other SAPN vaccines. Attention was paid to selecting processes that were amenable to scale up and cGMP manufacturing.


Asunto(s)
Antígenos de Protozoos/genética , Vacunas contra la Malaria/aislamiento & purificación , Malaria Falciparum/prevención & control , Nanopartículas/química , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Antígenos de Protozoos/química , Antígenos de Protozoos/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Vacunas contra la Malaria/biosíntesis , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Nanopartículas/ultraestructura , Replegamiento Proteico , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Vacunas Sintéticas
5.
J R Soc Interface ; 10(80): 20120740, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23303217

RESUMEN

Nanoscale assemblies are a unique class of materials, which can be synthesized from inorganic, polymeric or biological building blocks. The multitude of applications of this class of materials ranges from solar and electrical to uses in food, cosmetics and medicine. In this review, we initially highlight characteristic features of polymeric nanoscale assemblies as well as those built from biological units (lipids, nucleic acids and proteins). We give special consideration to protein nanoassemblies found in nature such as ferritin protein cages, bacterial microcompartments and vaults found in eukaryotic cells and designed protein nanoassemblies, such as peptide nanofibres and peptide nanotubes. Next, we focus on biomedical applications of these nanoscale assemblies, such as cell targeting, drug delivery, bioimaging and vaccine development. In the vaccine development section, we report in more detail the use of virus-like particles and self-assembling polypeptide nanoparticles as new vaccine delivery platforms.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanofibras , Nanotecnología/métodos , Nanotubos de Péptidos , Vacunas , Animales , Humanos
6.
PLoS One ; 7(10): e48304, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144750

RESUMEN

BACKGROUND: The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+) and CD4(+) T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN) vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects. METHODOLOGY/PRINCIPAL FINDINGS: To establish the basis for a SAPN-based vaccine, B- and CD8(+) T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP) and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids) that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP). We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year) protective antibody and poly-functional (IFNγ(+), IL-2(+)) long-lived central memory CD8(+) T-cells. Furthermore, we demonstrated that these Ab or CD8(+) T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites. CONCLUSION: The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP) and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Vacunas de ADN/inmunología , Traslado Adoptivo , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Malaria/inmunología , Malaria/prevención & control , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Nanopartículas/administración & dosificación , Nanopartículas/ultraestructura , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunas de ADN/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA