RESUMEN
In this work, a quantitative sandwich ELISA was optimized, through a full factorial design of experiments (DOE) in successive steps of a preliminary protocol obtained by the method of one factor at a time (OFAT). The specificity of the optimized ELISA, the lower limit of quantification, the quantification range and the analytical sensitivity of the antigen quantification curve were evaluated, in comparison with the curve obtained from the preliminary protocol. The full factorial DOE was linked to a simple statistical processing, which facilitates the interpretation of the results in those laboratories where there is no trained statistician. The step-by-step optimization of the ELISA and the successive incorporation into the protocol of the best combination of factors and levels, allowed obtaining a specific immunoassay, with an analytical sensitivity 20 times greater and with a lower limit of antigen quantification that decreased from 156.25 at 9.766 ng/mL. As far as we know, there are no reports of optimization of an ELISA following the step-by-step scheme used in this work. The optimized ELISA will be used for the quantification of the TT-P0 protein, the active principle of a vaccine candidate against sea lice.
Asunto(s)
Antígenos , Ensayo de Inmunoadsorción Enzimática/métodos , InmunoensayoRESUMEN
COVID-19 pandemic poses a serious threat to human health; it has completely disrupted global stability, making vaccine development an important goal to achieve. Monoclonal antibodies play an important role in subunit vaccines strategies. In this work, nine murine MAbs against the RBD of the SARS-CoV-2 spike protein were obtained by hybridoma technology. Characterization of purified antibodies demonstrated that five of them have affinities in the order of 108 L/mol. Six MAbs showed specific recognition of different recombinant RBD-S antigens in solution. Studies of the additivity index of anti-RBD antibodies, by using a novel procedure to determine the additivity cut point, showed recognition of at least five different epitopes. The MAbs CBSSRBD-S.11 and CBSSRBD-S.8 revealed significant neutralizing capacity against SARS-CoV-2 in an ACE2-RBD binding inhibition assay (IC50 = 85.5pM and IC50 = 122.7pM, respectively) and in a virus neutralizing test with intact SARS-CoV-2 (VN50 = 0.552 nM and VN50 = 4.854 nM, respectively) when D614G strain was used to infect Vero cells. Also CBSSRBD-S.11 neutralized the SARS-CoV-2 strains Alpha and Beta: VN50 = 0.707 nM and VN50 = 0.132 nM, respectively. The high affinity CBSSRBD-S.8 and CBSSRBD-S.7 recognized different epitopes, so they are suitable for the development of a sandwich ELISA to quantitate RBD-S recombinant antigens in biomanufacturing processes, as well as in pharmacokinetic studies in clinical and preclinical trials.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Vacunas contra la COVID-19/inmunología , COVID-19/diagnóstico , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/genética , COVID-19/inmunología , Vacunas contra la COVID-19/genética , Ensayos Clínicos como Asunto , Femenino , Ingeniería Genética , Humanos , Ratones , Ratones Endogámicos BALB C , Dominios y Motivos de Interacción de Proteínas/genética , Desarrollo de Vacunas , Vacunas de Subunidad/genéticaRESUMEN
Background: COVID-19 vaccines that trigger a strong secretory antibody response in breast milk may achieve effective passive protection of vulnerable newborns and breastfed infants of immunized mothers. The aim of this work was to investigate the presence of SARS-CoV-2 spike RBD-specific IgA and IgG antibodies in breast milk, 5 and 9 weeks after vaccination with 3 doses of the protein subunit vaccine Abdala, compared to those found in breast milk from COVID-19-recovered women, collected at least 40 days after the infection. Methods: SARS-CoV-2 spike RBD-specific IgA and IgG antibodies were semi-quantified by indirect ELISA, using a homemade standard generated by pooling twenty breast milk samples with high absorbance values according to preliminary data. The validity of the standard curves was proved following the European Medicines Agency Guideline. Two breast milk samples from 2 unvaccinated women who had not been infected with COVID-19 were included as negative controls. Potentially neutralizing antibodies was assessed by a SARS-CoV-2 surrogate virus neutralization test. Results: High levels of anti-RBD IgA antibodies were detected in breast milk samples 9 weeks after vaccination and anti-RBD IgG antibodies rise from the fifth to the ninth week. In the post-COVID-19 time that was evaluated, the IgG-type response was notably higher compared to both post-vaccination periods. Neutralizing antibody titers were similar in breast milk from vaccinated and COVID-19 recovered women. Conclusions: This is the first report about the immune response in breast milk after the administration of a COVID-19 protein subunit vaccine, which could provide analogous protection to that conferred by SARS-CoV-2 infection. This implies a potential passive immunity that breastfed infants receive from their mothers vaccinated with Abdala.
RESUMEN
BACKGROUND: A complete neurological exam contributes in establishing spinal cord injury severity and its extent by identifying the damage to the sensory and motor pathways involved in order to address a more case-specific and precise pharmacological therapy. However, assessment of neurologic function in spinal cord injury models is usually reported by using sensory or motor tests independently. METHODS: A reliable integral method is needed to precisely evaluate location and severity of the injury at baseline and, in further assessments, to establish the degree of spontaneous recovery. A combination of sensation-based tests and motor-based tests was used to evaluate impaired neurologic function after spinal cord injury and the degree of spontaneous recovery, in different stages, on an in vivo model. RESULTS: Combined neurologic evaluation was useful to establish location and severity of the injury in all animals and also to detect degrees of spontaneous recovery at different stages after the injury. Comparisons of neurological function were assessed in time-days and groups between BBB motor score, latency maintenance of posture, locomotion and latency presentation of grooming before and after the injury. Our results suggest that a combined assessment strategy, including sensory and motor tests, can lead to better evaluation of spinal cord injury severity and location, and documentation of the extent of spontaneous recovery following SCI and identify specific motor and sensory pathway integrity. CONCLUSION: In conclusion, a combined assessment strategy provides a concise method for evaluating the impact of interventions in experimental models of SCI.