Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Ecology ; 102(8): e03430, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34105778

RESUMEN

Interactions among plant species and their soil biota drive plant-soil feedbacks (PSFs) that play a major role in the dynamics and diversity of plant communities. Among the different components of the soil community, pathogens are considered to be the main drivers of negative PSFs. Despite this, the number of studies that have experimentally quantified the contribution of soil pathogens to PSFs remains considerably low. Here we conducted a greenhouse experiment with oomycete-specific fungicide to quantify the contribution of soil pathogens, and particularly oomycete pathogens, to individual and pairwise PSFs in forest communities. We used as a case study Mediterranean mixed forests dominated by Quercus suber and invaded by the oomycete pathogen Phytophthora cinnamomi. The fungicide treatment was crossed with a competition treatment to explore how conspecific neighbors might modify pathogen effects. To place the results of the experiment in a wider context, we also conducted a systematic review of published papers that explicitly used fungicide to explore the role of pathogens in PSF experiments. Our experimental results showed that oomycete pathogens were the main drivers of individual PSFs in the study forests. Oomycete effects varied among tree species according to their susceptibility to P. cinnamomi, driving negative PSFs in the highly susceptible Q. suber but not in the coexistent Olea europaea. Oomycete-driven PSFs were not modified by intraspecific competition. Oomycete pathogens were also major contributors to negative pairwise PSFs assumed to promote species coexistence. Results from the systematic review supported the novelty of our experimental results, since only three studies had previously used oomycete-specific fungicide in a PSF context and none in systems invaded by exotic oomycetes. Overall, our results provide novel evidence of oomycete pathogens (including the exotic P. cinnamomi) as fundamental drivers of negative individual and pairwise PSFs with implications for species coexistence in invaded communities. Although in the short-term invasive pathogens might contribute to species coexistence by causing self-limitation in dominant species, strong inter-specific variation in self-limitation might undermine coexistence in the long-term. Because of the increasing number of exotic oomycetes worldwide, further attention should be given to oomycetes as drivers of PSFs in plant communities.


Asunto(s)
Phytophthora , Suelo , Retroalimentación , Bosques , Plantas , Revisiones Sistemáticas como Asunto
2.
New Phytol ; 227(2): 588-600, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32012277

RESUMEN

Emergent diseases are an increasing problem in forests worldwide. Exotic pathogens are now threatening forests where pathogens have not traditionally been considered to be major ecological drivers of tree demography, such as water-limited Mediterranean forests. However, how pathogens might limit regeneration in invaded forests is largely unknown. Here we used fungicide to analyse the impact of soil-borne oomycete pathogens on seedling establishment at community level in Mediterranean forests invaded by the exotic oomycete Phytophthora cinnamomi. Fungicide effects were modelled as a function of the tree neighbourhood composition, the seed mass of the target species, and the abiotic environment. Fungicide application had positive effects on seedling performance that varied in magnitude and spatial structure among coexisting species. Seed mass predicted fungicide effects on seedling emergence, but not on survival or growth. Positive fungicide effects were modulated by levels of abiotic resources, mainly water, increasing with soil moisture. Our results support a novel role for soil-borne oomycete pathogens as one more axis of the regeneration niche of woody species in water-limited forests. Given the increasing numbers of exotic oomycete pathogens worldwide, more research is needed to understand the role of this relevant microbial group as a factor shaping seedling establishment.


Asunto(s)
Phytophthora , Suelo , Bosques , Plantones , Árboles
3.
Sci Rep ; 9(1): 9650, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273222

RESUMEN

Droughts associated with climate change alter ecosystem functions, especially in systems characterized by low biodiversity, such as agricultural fields. Management strategies aimed at buffering climate change effects include the enhancement of intraspecific crop diversity as well as the diversity of beneficial interactions with soil biota, such as arbuscular mycorrhizal fungi (AMF). However, little is known about reciprocal relations of crop and AMF diversity under drought conditions. To explore the interactive effects of plant genotype richness and AMF richness on plant yield under ambient and drought conditions, we established fully crossed diversity gradients in experimental microcosms. We expected highest crop yield and drought tolerance at both high barley and AMF diversity. While barley richness and AMF richness altered the performance of both barley and AMF, they did not mitigate detrimental drought effects on the plant and AMF. Root biomass increased with mycorrhiza colonization rate at high AMF richness and low barley richness. AMF performance increased under higher richness of both barley and AMF. Our findings indicate that antagonistic interactions between barley and AMF may occur under drought conditions, particularly so at higher AMF richness. These results suggest that unexpected alterations of plant-soil biotic interactions could occur under climate change.


Asunto(s)
Biodiversidad , Sequías , Ecosistema , Hordeum/genética , Micorrizas/clasificación , Genotipo , Hordeum/metabolismo , Hordeum/microbiología , Micorrizas/genética , Micorrizas/aislamiento & purificación , Micorrizas/metabolismo , Microbiología del Suelo
4.
Ecology ; 98(7): 1908-1921, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28419433

RESUMEN

Plant-soil feedbacks (PSFs) play a relevant role as drivers of species abundance, coexistence, and succession in plant communities. However, the potential contribution of PSFs to community dynamics in changing forest ecosystems affected by global change drivers is still largely unexplored. We measured the direction, strength and nature (biological vs. chemical) of PSFs experienced by coexisting tree species in two types of declining Quercus suber forests of southwestern Spain (open woodland vs. closed forest) invaded by the exotic soil pathogen Phytophthora cinnamomi. To test PSFs in a realistic community context, we focused not only on individual PSFs (i.e., comparing the growth of a tree species on conspecific vs. heterospecific soil) but also calculated net-pairwise PSFs by comparing performance of coexisting tree species on their own and each other's soils. We hypothesized that the decline and death of Q. suber would alter the direction and strength of individual and net-pairwise PSFs due to the associated changes in soil nutrients and microbial communities, with implications for recruitment dynamics and species coexistence. In support of our hypothesis, we found that the decline of Q. suber translated into substantial alterations of individual and net-pairwise PSFs, which shifted from mostly neutral to significantly positive or negative, depending on the forest type. In both cases however the identified PSFs benefited other species more than Q. suber (i.e., heterospecific positive PSF in the open woodland, conspecific negative PSF in the closed forest). Our results supported PSFs driven by changes in chemical soil properties (mainly phosphorus) and arbuscular mycorrhizal fungi, but not in pathogen abundance. Overall, our study suggests that PSFs might reinforce the loss of dominance of Q. suber in declining forests invaded by P. cinnamomi by promoting the relative performance of non-declining coexisting species. More generally, our results indicate an increase in the strength of net PSFs as natural forests become disturbed by global change drivers (e.g., invasive species), suggesting an increasingly important role of PSFs in forest community dynamics in the near future.


Asunto(s)
Ecosistema , Plantas , Suelo , Bosques , Micorrizas , España , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA