Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
ACS Omega ; 9(16): 18113-18118, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680304

RESUMEN

The Plectranthus genus (Lamiaceae) is known to be rich in abietane diterpenes. The bioactive 6,7-dehydroxyroyleanone (DHR, 1) was previously isolated from Plectranthus madagascariensis var. madagascariensis and var. aliciae. This study aimed to explore the occurrence of DHR, 1, in P. aliciae and the potential bioactivities of new semisynthetic derivatives from DHR, 1. Several extraction methods were evaluated, and the hydrodistillation, using a Clevenger apparatus, afforded the highest yield (77.8 mg/g of 1 in the essential oil). Three new acyl derivatives (2-4) were successfully prepared from 1 (yields of 86-95%). Compounds 1-4 showed antioxidant activity, antibacterial effects, potent cytotoxic activity against several cell lines, and enhanced anti-inflammatory activity that surpassed dexamethasone (positive control). These findings encourage further exploration of derivatives 2-4 for potential mechanisms of antitumoral, antioxidant, and anti-inflammatory capabilities, studying both safety and efficacy.

2.
Curr Pharm Des ; 26(24): 2892-2908, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32250221

RESUMEN

Medicinal plants are a good source of novel therapeutic drugs, due to the phytochemicals present. Artemia, commonly known as brine shrimp, is a tiny halophilic invertebrate belonging to class Crustacean, which plays an important role in saline aquatic and marine eco-systems. Besides its usage in aquaculture, it is also highly valued for its application in toxicity detection and it is used in areas such as Ecology, Physiology, Ecotoxicology, Aquaculture and Genetics. Furthermore, Artemia based lethality assay (brine shrimp lethality assay, BSLA) is rapid, convenient and low cost. Presently, brine shrimp lethality assays are enormously employed in research and applied toxicology. It has been used in the study of natural products as a preliminary toxicity assay to screen a large number of extracts and compounds for drug discovery in medicinal plants. The aim of this review paper is to collect, organize, select and discuss the existing knowledge about the different uses of Artemia salina as a bench-top bioassay for the discovery and purification of bioactive natural products.


Asunto(s)
Artemia , Plantas Medicinales , Animales , Bioensayo , Humanos
3.
Curr Pharm Des ; 24(36): 4312-4333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30636587

RESUMEN

The exponential growth of cancer cases worldwide together with recent advances concerning the pathophysiological mechanisms of the disease at the molecular level led to a paradigm shift in chemotherapy, from monotherapy to targeted drug combination regimens. However, adverse effects and the emergence of multidrug resistance (MDR) limit the effectiveness of these therapies. In this context, hybrid combinations mixing anticancer drugs and bioactive phytochemical components from medicinal plants, or even plant extracts, that can act synergistically on multiple targets and signaling pathways represent a promising approach with the potential to expand the current therapeutic arsenal. This review aims to provide a synopsis on anticancer hybrid combinations based on their multi-target mechanisms and synergistic effects from an extensive literature search focusing mainly on publications from the last ten years. In most of these combinations, the phytochemical component was shown to enhance the anticancer activity of the chemotherapeutic agent and to sensitize chemoresistant tumors in several types of cancer. Hybrid combinations, due to synergistic interactions, are also associated with less severe adverse events since lower doses can be used to achieve the same therapeutic effect. Further preclinical and clinical studies are needed, as well as the development of an adequate regulatory framework, before hybrid combination therapy can be translated into clinical practice.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA