RESUMEN
AIM: Endometrial cancer (EC) is heterogeneous with respect to epidemiology, clinical course, histopathology and tumor biology. Recently, The Cancer Genome Atlas (TCGA) network has identified four molecular subtypes with distinct clinical courses by an integrated multi-omics approach. These subtypes are of critical importance in the clinical management of EC. However, determination of TCGA molecular subtypes requires a complex methodological approach that is resource intensive and difficult to implement in diagnostic routine procedures. In this context, Talhouk et al. reported the precise determination of modified subtypes based on molecular surrogates obtained by a two-method approach comprising immunohistochemistry and DNA-sequence analysis (Proactive Molecular Risk Classifier for Endometrial Cancer; ProMisE). In this study, we aimed to identify EC molecular subtypes in analogy to TCGA and ProMisE applying an innovative whole exome-sequencing (WES) based single-method approach. METHODS: WES was performed in a cohort comprising N = 114 EC patients. WES data were analyzed using the oncology treatment decision support software MH Guide (Molecular Health, Heidelberg, Germany) and EC molecular subtypes in analogy to TCGA and ProMisE were determined. Results from both classifications were compared regarding their prognostic values using overall survival and progression-free survival analyses. RESULTS: Applying a single-method WES-approach, EC molecular subtypes analogue to TCGA and ProMisE were identified in the study cohort. The surrogate marker-analogue classification precisely identified high-risk and low-risk EC, whereas the TCGA-analogue classification failed to obtain significant prognostic values in this regard. CONCLUSION: Our data demonstrate that determination of EC molecular subtypes analogue to TCGA and ProMisE is feasible by using a single-method WES approach. Within our EC cohort, prognostic implications were only reliably provided by applying the surrogate marker-analogue approach. Designation of molecular subtypes in EC will be increasingly important in routine clinical practice. Thus, the single-method WES approach provides an important simple tool to tailor therapeutic decisions in EC.
Asunto(s)
Neoplasias Endometriales , Secuenciación del Exoma , Humanos , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/clasificación , Femenino , Secuenciación del Exoma/métodos , Anciano , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Pronóstico , Anciano de 80 o más Años , AdultoRESUMEN
Background and Aims: Hepatocellular ballooning is a common finding in chronic liver disease, mainly characterized by rarefied cytoplasm that often contains Mallory-Denk bodies (MDB). Ballooning has mostly been attributed to degeneration but its striking resemblance to glycogenotic/steatotic changes characterizing preneoplastic hepatocellular lesions in animal models and chronic human liver diseases prompts the question whether ballooned hepatocytes (BH) are damaged cells on the path to death or rather viable cells, possibly involved in neoplastic development. Methods: Using specimens from 96 cirrhotic human livers, BH characteristics were assessed for their glycogen/lipid stores, enzyme activities, and proto-oncogenic signaling cascades by enzyme- and immunohistochemical approaches with serial paraffin and cryostat sections. Results: BH were present in 43.8% of cirrhotic livers. Particularly pronounced excess glycogen storage of (glycogenosis) and/or lipids (steatosis) were characteristic, ground glass features and MDB were often observed. Decreased glucose-6-phosphatase, increased glucose-6-phosphate dehydrogenase activity and altered immunoreactivity of enzymes involved in glycolysis, lipid metabolism, and cholesterol biosynthesis were discovered. Furthermore, components of the insulin signaling cascade were upregulated along with insulin dependent glucose transporter glucose transporter 4 and the v-akt murine thymoma viral oncogene homolog/mammalian target of rapamycin signaling pathway associated with de novo lipogenesis. Conclusions: BH are hallmarked by particularly pronounced glycogenosis with facultative steatosis, many of their features being reminiscent of metabolic aberrations documented in preneoplastic hepatocellular lesions in experimental animals and chronic human liver diseases. Hence, BH are not damaged entities facing death but rather viable cells featuring metabolic reprogramming, indicative of a preneoplastic nature.
RESUMEN
BACKGROUND: GD2-directed immunotherapy is highly effective in the treatment of high-risk neuroblastoma (NB), and might be an interesting target also in other high-risk tumors. METHODS: The German-Austrian Retinoblastoma Registry, Essen, was searched for patients, who were treated with anti-GD2 monoclonal antibody (mAb) dinutuximab beta (Db) in order to evaluate toxicity, response and outcome in these patients. Additionally, we evaluated anti-GD2 antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in retinoblastoma cell lines in vitro. Furthermore, in vitro cytotoxicity assays directed against B7-H3 (CD276), a new identified potential target in RB, were performed. RESULTS: We identified four patients with relapsed stage IV retinoblastoma, who were treated with Db following autologous stem cell transplantation (ASCT). Two out of two evaluable patients with detectable tumors responded to immunotherapy. One of these and another patient who received immunotherapy without residual disease relapsed 10 and 12 months after start of Db. The other patients remained in remission until last follow-up 26 and 45 months, respectively. In vitro, significant lysis of RB cell lines by ADCC and CDC with samples from patients and healthy donors and anti-GD2 and anti-CD276-mAbs were demonstrated. CONCLUSION: Anti-GD2-directed immunotherapy represents an additional therapeutic option in high-risk metastasized RB. Moreover, CD276 is another target of interest.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/terapia , Trasplante Autólogo , Recurrencia Local de Neoplasia , Inmunoterapia , Gangliósidos , Antígenos B7RESUMEN
Hydrodynamic transfection (HT) or hydrodynamic tail vein injection (HTVi) is among the leading technique that is used to deliver plasmid genes mainly into the liver of live mice or rats. The DNA constructs are composed of coupled plasmids, while one contains the gene of interest that stably integrate into the hepatocyte genome with help of the other consisting sleeping beauty transposase system. The rapid injection of a large volume of DNA-solution through the tail vein induces an acute cardiac congestion that refluxed into the liver, mainly in acinus zone 3, also found through our EM study. Although, HT mediated hydrodynamic force can permeabilizes the fenestrated sinusoidal endothelium of liver, but the mechanism of plasmid incorporation into the hepatocytes remains unclear. Therefore, in the present study, we have hydrodynamically injected 2 mL volume of empty plasmid (transposon vector) or saline solution (control) into the tail vein of anesthetized C57BL/6J/129Sv mice. Liver tissue was resected at different time points from two animal group conditions, i.e., one time point per animal (1, 5, 10-20, 60 min or 24 and 48 hrs after HT) or multiple time points per animal (0, 1, 2, 5, 10, 20 min) and quickly fixed with buffered 4% osmium tetroxide. The tissues fed with only saline solution was also resected and fixed in the similar way. EM evaluation from the liver ultrathin sections reveals that swiftly after 1 min, the hepatocytes near to the central venule in the acinus zone 3 shows cytoplasmic membrane-bound vesicles. Such vesicles increased in both numbers and size to vacuoles and precisely often found in the proximity to the nucleus. Further, EM affirm these vacuoles are also optically empty and do not contain any electron dense material. Although, some of the other hepatocytes reveals sign of cell damage including swollen mitochondria, dilated endoplasmic reticulum, Golgi apparatus and disrupted plasma membrane, but most of the hepatocytes appeared normal. The ultrastructural findings in the mice injected with empty vector or saline injected control mice were similar. Therefore, we have interpreted the vacuole formation as nonspecific endocytosis without specific interactions at the plasma membrane.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/metabolismo , Anticuerpos Monoclonales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/metabolismo , Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética , Gangliósidos/metabolismoRESUMEN
Background: Invasive mold infections are a well-known and life-threatening condition after allogeneic hematopoietic stem cell transplantation (HSCT). While Aspergillus species are recognized as predominant pathogens, Fusarium species should also be considered due to their broad environmental distribution and the expected poor outcome of invasive fusariosis. Particularly, splenic rupture as a complication of disseminated disease has not been reported yet. Case presentation: Two weeks after allogeneic HSCT for severe aplastic anemia, a 16-year-old boy presented with painful, erythematous skin nodules affecting the entire integument. As disseminated mycosis was considered, treatment with liposomal amphotericin B and voriconazole (VCZ) was initiated. Invasive fusariosis was diagnosed after histological and previously unpublished polymerase chain reaction-based examination of skin biopsies. Microbiological tests revealed Fusarium solani species. Despite stable neutrophil engraftment and uninterrupted treatment with VCZ, he developed mold disease-associated splenic rupture with hypovolemic shock and fungal endocarditis. The latter induced a cardiac thrombus and subsequent embolic cerebral infarctions with unilateral hemiparesis. Following cardiac surgery, the patient did not regain consciousness because of diffuse cerebral ischemia, and he died on day +92 after HSCT. Conclusion: Invasive fusariosis in immunocompromised patients is a life-threatening condition. Despite antimycotic treatment adapted to antifungal susceptibility testing, the patient reported here developed uncommon manifestations such as splenic rupture and fungal endocarditis.
RESUMEN
BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive primary liver tumor with increasing incidence worldwide, dismal prognosis, and few therapeutic options. Mounting evidence underlines the role of the Hippo pathway in this disease; however, the molecular mechanisms whereby the Hippo cascade contributes to cholangiocarcinogenesis remain poorly defined. METHODS: We established novel iCCA mouse models via hydrodynamic transfection of an activated form of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo pathway downstream effector, either alone or combined with the myristoylated AKT (myr-AKT) protooncogene, in the mouse liver. Hematoxylin and eosin staining, immunohistochemistry, electron microscopy, and quantitative real-time RT-PCR were applied to characterize the models. In addition, in vitro cell line studies were conducted to address the growth-promoting roles of TAZ and its paralog YAP. RESULTS: Overexpression of TAZ in the mouse liver triggered iCCA development with very low incidence and long latency. In contrast, co-expression of TAZ and myr-AKT dramatically increased tumor frequency and accelerated cancer formation in mice, with 100% iCCA incidence and high tumor burden by 10 weeks post hydrodynamic injection. AKT/TAZ tumors faithfully recapitulated many of the histomolecular features of human iCCA. At the molecular level, the development of the cholangiocellular lesions depended on the binding of TAZ to TEAD transcription factors. In addition, inhibition of the Notch pathway did not hamper carcinogenesis but suppressed the cholangiocellular phenotype of AKT/TAZ tumors. Also, knockdown of YAP, the TAZ paralog, delayed cholangiocarcinogenesis in AKT/TAZ mice without affecting the tumor phenotype. Furthermore, human preinvasive and invasive iCCAs and mixed hepatocellular carcinoma/iCCA displayed widespread TAZ activation and downregulation of the mechanisms protecting TAZ from proteolysis. CONCLUSIONS: Overall, the present data underscore the crucial role of TAZ in cholangiocarcinogenesis.
Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Carcinoma Hepatocelular/patología , Colangiocarcinoma/patología , Vía de Señalización Hippo , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAPRESUMEN
Despite multimodal therapy, the prognosis of patients with metastatic Ewing sarcoma (ES) remains poor, with new treatments urgently needed. The disialoganglioside GD2, a well-established tumor-associated antigen, is expressed in 40% to 90% of ES cells, making it a suitable therapeutic target. Here we report 3 cases with newly diagnosed, metastatic, GD2-positive ES or Ewing-like sarcoma treated with the anti-GD2 antibody dinutuximab beta in addition to standard chemotherapeutic regimens. Treatment was well-tolerated, and all patients achieved complete remission, without evidence of relapse. First-line anti-GD2 immunotherapy in patients with metastatic, GD2-positive ES or Ewing-like sarcoma represents a promising therapeutic option that warrants further clinical evaluation.
Asunto(s)
Sarcoma de Ewing , Sarcoma , Neoplasias de los Tejidos Blandos , Quimioterapia de Consolidación , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Sarcoma/tratamiento farmacológico , Sarcoma de Ewing/patología , Neoplasias de los Tejidos Blandos/tratamiento farmacológicoRESUMEN
The major tumor suppressor P53 (TP53) acts primarily as a transcription factor by activating or repressing subsets of its numerous target genes, resulting in different cellular outcomes (e.g., cell cycle arrest, apoptosis and senescence). P53-dependent gene regulation is linked to several aspects of chromatin remodeling; however, regulation of chromatin-modifying enzymes by P53 is poorly understood in hepatocarcinogenesis. Herein, we identified Helicase, lymphoid specific (HELLS), a major epigenetic regulator in liver cancer, as a strong and selective P53 repression target within the SNF2-like helicase family. The underlying regulatory mechanism involved P53-dependent induction of P21 (CDKN1A), leading to repression of Forkhead Box Protein M1 (FOXM1) that in turn resulted in downregulation of HELLS expression. Supporting our in vitro data, we found higher expression of HELLS in murine HCCs arising in a Trp53-/- background compared to Trp53+/+ HCCs as well as a strong and highly significant correlation between HELLS and FOXM1 expression in different HCC patient cohorts. Our data suggest that functional or mutational inactivation of P53 substantially contributes to overexpression of HELLS in HCC patients and indicates a previously unstudied aspect of P53's ability to suppress liver cancer formation.
RESUMEN
Aberrant activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR and Ras/mitogen-activated protein kinase (MAPK) pathways is a hallmark of hepatocarcinogenesis. In a subset of hepatocellular carcinomas (HCCs), PI3K/AKT/mTOR signaling dysregulation depends on phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations, while RAS/MAPK activation is partly attributed to promoter methylation of the tumor suppressor Ras association domain-containing protein 1 (RASSF1A). To evaluate a possible cocarcinogenic effect of PIK3CA activation and RASSF1A knockout, plasmids expressing oncogenic forms of PIK3CA (E545K or H1047R mutants) were delivered to the liver of RASSF1A knockout and wild-type mice by hydrodynamic tail vein injection combined with sleeping beauty-mediated somatic integration. Transfection of either PIK3CA E545K or H1047R mutants sufficed to induce HCCs in mice irrespective of RASSF1A mutational background. The related tumors displayed a lipogenic phenotype with upregulation of fatty acid synthase and stearoyl-CoA desaturase-1 (SCD1). Galectin-1, which was commonly upregulated in preneoplastic lesions and tumors, emerged as a regulator of SCD1. Co-inhibitory treatment with PIK3CA inhibitors and the galectin-1 inhibitor OTX008 resulted in synergistic cytotoxicity in human HCC cell lines, suggesting novel therapeutic venues.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Galectina 1/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia ArribaRESUMEN
OBJECTIVE: In the rat, the pancreatic islet transplantation model is an established method to induce hepatocellular carcinomas (HCC), due to insulin-mediated metabolic and molecular alterations like increased glycolysis and de novo lipogenesis and the oncogenic AKT/mTOR pathway including upregulation of the transcription factor Carbohydrate-response element-binding protein (ChREBP). ChREBP could therefore represent an essential oncogenic co-factor during hormonally induced hepatocarcinogenesis. METHODS: Pancreatic islet transplantation was implemented in diabetic C57Bl/6J (wild type, WT) and ChREBP-knockout (KO) mice for 6 and 12 months. Liver tissue was examined using histology, immunohistochemistry, electron microscopy and Western blot analysis. Finally, we performed NGS-based transcriptome analysis between WT and KO liver tumor tissues. RESULTS: Three hepatocellular carcinomas were detectable after 6 and 12 months in diabetic transplanted WT mice, but only one in a KO mouse after 12 months. Pre-neoplastic clear cell foci (CCF) were also present in liver acini downstream of the islets in WT and KO mice. In KO tumors, glycolysis, de novo lipogenesis and AKT/mTOR signalling were strongly downregulated compared to WT lesions. Extrafocal liver tissue of diabetic, transplanted KO mice revealed less glycogen storage and proliferative activity than WT mice. From transcriptome analysis, we identified a set of transcripts pertaining to metabolic, oncogenic and immunogenic pathways that are differentially expressed between tumors of WT and KO mice. Of 315 metabolism-associated genes, we observed 199 genes that displayed upregulation in the tumor of WT mice, whereas 116 transcripts showed their downregulated expression in KO mice tumor. CONCLUSIONS: The pancreatic islet transplantation model is a suitable method to study hormonally induced hepatocarcinogenesis also in mice, allowing combination with gene knockout models. Our data indicate that deletion of ChREBP delays insulin-induced hepatocarcinogenesis, suggesting a combined oncogenic and lipogenic function of ChREBP along AKT/mTOR-mediated proliferation of hepatocytes and induction of hepatocellular carcinoma.
Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Hepatocelular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hormonas/efectos adversos , Neoplasias Hepáticas/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/ultraestructura , Proliferación Celular , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glucógeno/metabolismo , Glucólisis , Lipogénesis , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/ultraestructura , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
ErbB2 is a prominent representative of the epidermal growth factor receptors that mainly attract attention as oncogenic drivers and therapeutic targets in cancer. Besides transmembrane signaling, ErbB2 may also translocate into the nucleus and mediate distinct nuclear signaling effects including DNA repair and cell cycle arrest. Unexpectedly, we found nuclear ErbB2 expression in human hepatocytes in various liver diseases so we aimed to investigate the characteristics of liver disease leading to nuclear ErbB2 translocation. The immunohistochemical pattern of ErbB2 staining was analyzed in 1125 liver biopsy samples from patients with hepatic dysfunction. Further signaling and metabolic markers were analyzed by immunohistochemistry in selected liver biopsy samples. We found a cytoplasmic and nuclear ErbB2 expression in hepatocytes from different disease conditions with the strongest expression detected in alcoholic steatohepatitis. Nuclear ErbB2 positivity significantly correlated with histologic parameters of hepatocellular damage including inflammatory activity in steatohepatitis, hepatocellular ballooning, and cholestasis. ErbB2 overexpressing hepatocytes revealed an increase of phospho-STAT3, a downstream effector of nuclear ErbB2 signaling. Notably, we observed in nuclear ErbB2-positive hepatocytes a downregulation of estrogen receptor expression. In alcoholic steatohepatitis and other toxic liver diseases, hepatocytes revealed a nuclear ErbB2 expression implying a so far unknown mechanism in hepatocytes upon cellular stress that might lead to resistance to cell death. Nuclear ErbB2-positive hepatocytes showed downregulation of estrogen receptor expression and increased levels of pSTAT3, which are signs of functionality of nuclear ErbB2 signaling. Furthermore, analysis of hepatocellular ErbB2 expression could serve as helpful tool for diagnosis of liver disease.
Asunto(s)
Núcleo Celular/química , Hepatocitos/química , Hepatopatías/metabolismo , Hígado/química , Receptor ErbB-2/análisis , Biomarcadores/análisis , Biopsia con Aguja Gruesa , Núcleo Celular/patología , Hepatocitos/patología , Humanos , Inmunohistoquímica , Hígado/patología , Hepatopatías/patología , Fosforilación , Valor Predictivo de las Pruebas , Receptores de Estrógenos/análisis , Factor de Transcripción STAT3/análisisRESUMEN
Clear cell foci (CCF) of the liver are considered to be pre-neoplastic lesions of hepatocellular adenomas and carcinomas. They are hallmarked by glycogen overload and activation of AKT (v-akt murine thymoma viral oncogene homolog)/mTOR (mammalian target of rapamycin)-signaling. Here, we report the transcriptome and proteome of CCF extracted from human liver biopsies by laser capture microdissection. We found 14 genes and 22 proteins differentially expressed in CCF and the majority of these were expressed at lower levels in CCF. Using immunohistochemistry, the reduced expressions of STBD1 (starch-binding domain-containing protein 1), USP28 (ubiquitin-specific peptidase 28), monad/WDR92 (WD repeat domain 92), CYB5B (Cytochrome b5 type B), and HSPE1 (10 kDa heat shock protein, mitochondrial) were validated in CCF in independent specimens. Knockout of Stbd1, the gene coding for Starch-binding domain-containing protein 1, in mice did not have a significant effect on liver glycogen levels, indicating that additional factors are required for glycogen overload in CCF. Usp28 knockout mice did not show changes in glycogen storage in diethylnitrosamine-induced liver carcinoma, demonstrating that CCF are distinct from this type of cancer model, despite the decreased USP28 expression. Moreover, our data indicates that decreased USP28 expression is a novel factor contributing to the pre-neoplastic character of CCF. In summary, our work identifies several novel and unexpected candidates that are differentially expressed in CCF and that have functions in glycogen metabolism and tumorigenesis.