Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 24(40): 12476-12485, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39316412

RESUMEN

Structural transformations in strongly correlated materials promise efficient and fast control of materials' properties via electrical or optical stimulation. The desired functionality of devices operating based on phase transitions, however, will also be influenced by nanoscale heterogeneity. Experimentally characterizing the relationship between microstructure and phase switching remains challenging, as nanometer resolution and high sensitivity to subtle structural modifications are required. Here, we demonstrate nanoimaging of a current-induced phase transformation in the charge-density wave (CDW) material 1T-TaS2. Combining electrical characterizations with tailored contrast enhancement, we correlate macroscopic resistance changes with the nanoscale nucleation and growth of CDW phase domains. In particular, we locally determine the transformation barrier in the presence of dislocations and strain, underlining their non-negligible impact on future functional devices. Thereby, our results demonstrate the merit of tailored contrast enhancement and beam shaping for advanced operando microscopy of quantum materials and devices.

3.
Nat Mater ; 22(11): 1345-1351, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37414945

RESUMEN

The tunability of materials properties by light promises a wealth of future applications in energy conversion and information technology. Strongly correlated materials such as transition metal dichalcogenides offer optical control of electronic phases, charge ordering and interlayer correlations by photodoping. Here, we find the emergence of a transient hexatic state during the laser-induced transformation between two charge-density wave phases in a thin-film transition metal dichalcogenide, 1T-type tantalum disulfide (1T-TaS2). Introducing tilt-series ultrafast nanobeam electron diffraction, we reconstruct charge-density wave rocking curves at high momentum resolution. An intermittent suppression of three-dimensional structural correlations promotes a loss of in-plane translational order caused by a high density of unbound topological defects, characteristic of a hexatic intermediate. Our results demonstrate the merit of tomographic ultrafast structural probing in tracing coupled order parameters, heralding universal nanoscale access to laser-induced dimensionality control in functional heterostructures and devices.

4.
Science ; 371(6527): 371-374, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479147

RESUMEN

Understanding microscopic processes in materials and devices that can be switched by light requires experimental access to dynamics on nanometer length and femtosecond time scales. Here, we introduce ultrafast dark-field electron microscopy to map the order parameter across a structural phase transition. We use ultrashort laser pulses to locally excite a 1T-TaS2 (1T-polytype of tantalum disulfide) thin film and image the transient state of the specimen by ultrashort electron pulses. A tailored dark-field aperture array allows us to track the evolution of charge-density wave domains in the material with simultaneous femtosecond temporal and 5-nanometer spatial resolution, elucidating relaxation pathways and domain wall dynamics. The distinctive benefits of selective contrast enhancement will inspire future beam-shaping technology in ultrafast transmission electron microscopy.

5.
Struct Dyn ; 6(1): 014301, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30868085

RESUMEN

Tip-based photoemission electron sources offer unique properties for ultrafast imaging, diffraction, and spectroscopy experiments with highly coherent few-electron pulses. Extending this approach to increased bunch-charges requires a comprehensive experimental study on Coulomb interactions in nanoscale electron pulses and their impact on beam quality. For a laser-driven Schottky field emitter, we assess the transverse and longitudinal electron pulse properties in an ultrafast transmission electron microscope at a high photoemission current density. A quantitative characterization of electron beam emittance, pulse duration, spectral bandwidth, and chirp is performed. Due to the cathode geometry, Coulomb interactions in the pulse predominantly occur in the direct vicinity to the tip apex, resulting in a well-defined pulse chirp and limited emittance growth. Strategies for optimizing electron source parameters are identified, enabling advanced ultrafast transmission electron microscopy approaches, such as phase-resolved imaging and holography.

6.
Ultramicroscopy ; 176: 63-73, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28139341

RESUMEN

We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9Å focused beam diameter, 200fs pulse duration and 0.6eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA