Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Pharm X ; 8: 100263, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39040516

RESUMEN

Hot-melt extrusion (HME) potentially coupled with 3D printing is a promising technique for the manufacturing of dosage forms such as drug-eluting implants which might even be individually adapted to patient-specific anatomy. However, these manufacturing methods involve the risk of thermal degradation of incorporated drugs during processing. In this work, the stability of the anti-inflammatory drug dexamethasone (DEX) was studied during HME using the polymers Eudragit® RS, ethyl cellulose and polyethylene oxide. The extrusion process was performed at different temperatures. Furthermore, the influence of accelerated screw speed, the addition of the plasticizers triethyl citrate and polyethylene glycol 6000 or the addition of the antioxidants butylated hydroxytoluene and tocopherol in two concentrations were studied. The DEX recovery was analyzed by a high performance liquid chromatography method suitable for the detection of thermal degradation products. The strongest impact on the drug stability was found for the processing temperature, which was found to reduce the DEX recovery to <20% for certain processing conditions. In addition, differences between tested polymers were observed, whereas the use of additives did not result in remarkable changes in drug stability. In conclusion, suitable extrusion parameters were identified for the processing of DEX with high drug recovery rates for the tested polymers. Moreover, the importance of a suitable analysis method for drug stability during HME that is influenced by several parameters was highlighted.

2.
Pharmaceutics ; 15(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37111760

RESUMEN

The local treatment of diseases by drug-eluting implants is a promising tool to enable successful therapy under potentially reduced systemic side effects. Especially, the highly flexible manufacturing technique of 3D printing provides the opportunity for the individualization of implant shapes adapted to the patient-specific anatomy. It can be assumed that variations in shape can strongly affect the released amounts of drug per time. This influence was investigated by performing drug release studies with model implants of different dimensions. For this purpose, bilayered model implants in a simplified geometrical shape in form of bilayered hollow cylinders were developed. The drug-loaded abluminal part consisted of a suitable polymer ratio of Eudragit® RS and RL, while the drug-free luminal part composed of polylactic acid served as a diffusion barrier. Implants with different heights and wall thicknesses were produced using an optimized 3D printing process, and drug release was determined in vitro. The area-to-volume ratio was identified as an important parameter influencing the fractional drug release from the implants. Based on the obtained results drug release from 3D printed implants with individual shapes exemplarily adapted to the frontal neo-ostial anatomy of three different patients was predicted and also tested in an independent set of experiments. The similarity of predicted and tested release profiles indicates the predictability of drug release from individualized implants for this particular drug-eluting system and could possibly facilitate the estimation of the performance of customized implants independent of individual in vitro testing of each implant geometry.

3.
Pharmaceutics ; 14(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36559169

RESUMEN

Pharmaceutical compounding using the molding technique is the currently applied method for the on-demand manufacturing of suppositories and pessaries. Potential errors of this method are difficult to detect, and the possibilities of individualization of size and shape of the suppositories are limited. In this study, a syringe-based semi-solid 3D printing technique was developed for the manufacturing of suppositories in three different printing designs with the suppository bases polyethylene glycol (PEG) and hard fat (HF). The 3D printed suppositories were analyzed for their visual appearance, uniformity of mass and content, diametrical dimension, breaking force and release behavior and compared to suppositories of the same composition prepared by a commonly used molding technique. The results showed no adverse properties for the 3D printed suppositories compared to the molded ones. Moreover, the easy adaptation of shape using the 3D printing technique was demonstrated by the printing of different sizes and infill structures. Thus, 3D printing has great potential to complement the available manufacturing methods for compounded suppositories, as it represents an automated system for the individualized manufacturing of suppositories that meet patients' needs.

4.
Pharmaceutics ; 14(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745813

RESUMEN

Postoperative restenosis in patients with external ear canal (EEC) atresia or stenosis is a common complication following canaloplasty. Our aim in this study was to explore the feasibility of using a three dimensionally (3D)-printed, patient-individualized, drug ((dexamethasone (DEX)), and ciprofloxacin (cipro))-releasing external ear canal implant (EECI) as a postoperative stent after canaloplasty. We designed and pre-clinically tested this novel implant for drug release (by high-performance liquid chromatography), biocompatibility (by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay), bio-efficacy (by the TNF-α (tumor necrosis factor-alpha)-reduction test (DEX) and inhibition zone test (for cipro)), and microbial contamination (formation of turbidity or sediments in culture medium). The EECI was implanted for the first time to one patient with a history of congenital EEC atresia and state after three canaloplasties due to EEC restenosis. The preclinical tests revealed no cytotoxic effect of the used materials; an antibacterial effect was verified against the bacteria Staphylococcus aureus and Pseudomonas aeruginosa, and the tested UV-irradiated EECI showed no microbiological contamination. Based on the test results, the combination of silicone with 1% DEX and 0.3% cipro was chosen to treat the patient. The EECI was implantable into the EEC; the postoperative follow-up visits revealed no otogenic symptoms or infections and the EECI was explanted three months postoperatively. Even at 12 months postoperatively, the EEC showed good epithelialization and patency. Here, we report the first ever clinical application of an individualized, drug-releasing, mechanically flexible implant and suggest that our novel EECI represents a safe and effective method for postoperatively stenting the reconstructed EEC.

5.
Molecules ; 26(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34279405

RESUMEN

The usage of 3D-printing for drug-eluting implants combines the advantages of a targeted local drug therapy over longer periods of time at the precise location of the disease with a manufacturing technique that easily allows modifications of the implant shape to comply with the individual needs of each patient. Research until now has been focused on several aspects of this topic such as 3D-printing with different materials or printing techniques to achieve implants with different shapes, mechanical properties or release profiles. This review is intended to provide an overview of the developments currently described in the literature. The topic is very multifaceted and several of the investigated aspects are not related to just one type of application. Consequently, this overview deals with the topic of 3D-printed drug-eluting implants in the application fields of stents and catheters, gynecological devices, devices for bone treatment and surgical screws, antitumoral devices and surgical meshes, as well as other devices with either simple or complex geometry. Overall, the current findings highlight the great potential of the manufacturing of drug-eluting implants via 3D-printing technology for advanced individualized medicine despite remaining challenges such as the regulatory approval of individualized implants.


Asunto(s)
Stents Liberadores de Fármacos/normas , Impresión Tridimensional , Animales , Stents Liberadores de Fármacos/efectos adversos , Humanos
6.
Eur J Pharm Sci ; 123: 191-198, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30031859

RESUMEN

Over the last years fused deposition modeling has been increasingly considered as a game-changing technique for the preparation of individualized pharmaceutical products. Until now investigations have mainly focused on dosage forms loaded with very stable drugs or model substances. Going beyond this early stage of research, developers will also have to deal with more challenging active substances. In this work different printing designs for tablets containing the acid- and thermo-labile drug pantoprazole sodium were tested. Initial dual extrusion printing of a cellulose acetate phthalate coat and a tablet core of polyethylene glycol 6000 with 10% (m/m) pantoprazole sodium resulted in thermal degradation of pantoprazole at cellulose acetate phthalate printing temperatures of 141 °C. Therefore, different tablet designs were developed. The sectioning of the design of the tablet coat in a gastro-resistant cellulose acetate phthalate bottom part and an upper nearly insoluble polycaprolactone part printed at only 58 °C was suitable to prevent visible signs of thermal degradation. Dissolution testing indicated also no drug loss during dual extrusion printing. However, printed enteric tablets with shell thicknesses of 0.4 to 0.5 mm were not completely gastro-resistant. Drug release at intestinal pH values was delayed compared to uncoated cores. In conclusion, 3D-printing of gastro-resistant tablets containing thermo- and acid-labile drugs seems in principle possible. However, it remains an unsolved challenge to meet United States Pharmacopeia requirements.


Asunto(s)
Pantoprazol/química , Impresión Tridimensional , Comprimidos/química , Celulosa/análogos & derivados , Excipientes , Pantoprazol/farmacología
7.
Pharm Res ; 35(6): 124, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679157

RESUMEN

PURPOSE: Dissolution speeds of tablets printed via Fused Deposition Modeling (FDM) so far are significantly lower compared to powder or granule pressed immediate release tablets. The aim of this work was to print an actual immediate release tablet by choosing suitable polymers and printing designs, also taking into account lower processing temperatures (below 100°C) owing to the used model drug pantoprazole sodium. METHODS: Five different pharmaceutical grade polymers polyvinylpyrrolidone (PVP K12), polyethylene glycol 6000 (PEG 6000), Kollidon® VA64, polyethylene glycol 20,000 (PEG 20,000) and poloxamer 407 were successfully hot-melt-extruded to drug loaded filaments and printed to tablets at the required low temperatures. RESULTS: Tablets with the polymers PEG 6000 and PVP K12 and with a proportion of 10% pantoprazole sodium (w/w) demonstrated a fast drug release that was completed within 29 min or 10 min, respectively. By reducing the infill rate of PVP tablets to 50% and thereby increase the tablet porosity it was even possible to reduce the mean time for total drug release to only 3 min. CONCLUSIONS: The knowledge acquired through this work might be very beneficial for future FDM applications in the field of immediate release tablets especially with respect to thermo-sensitive drugs.


Asunto(s)
Composición de Medicamentos/métodos , Liberación de Fármacos , Impresión Tridimensional , Composición de Medicamentos/instrumentación , Excipientes/química , Pantoprazol/administración & dosificación , Pantoprazol/farmacocinética , Polímeros/química , Porosidad , Comprimidos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA