RESUMEN
Discovering rare cancer driver genes is difficult because their mutational frequency is too low for statistical detection by computational methods. EPIMUTESTR is an integrative nearest-neighbor machine learning algorithm that identifies such marginal genes by modeling the fitness of their mutations with the phylogenetic Evolutionary Action (EA) score. Over cohorts of sequenced patients from The Cancer Genome Atlas representing 33 tumor types, EPIMUTESTR detected 214 previously inferred cancer driver genes and 137 new candidates never identified computationally before of which seven genes are supported in the COSMIC Cancer Gene Census. EPIMUTESTR achieved better robustness and specificity than existing methods in a number of benchmark methods and datasets.
Asunto(s)
Aprendizaje Automático , Neoplasias , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Oncogenes , FilogeniaRESUMEN
Genetic variants drive the evolution of traits and diseases. We previously modeled these variants as small displacements in fitness landscapes and estimated their functional impact by differentiating the evolutionary relationship between genotype and phenotype. Conversely, here we integrate these derivatives to identify genes steering specific traits. Over cancer cohorts, integration identified 460 likely tumor-driving genes. Many have literature and experimental support but had eluded prior genomic searches for positive selection in tumors. Beyond providing cancer insights, these results introduce a general calculus of evolution to quantify the genotype-phenotype relationship and discover genes associated with complex traits and diseases.
Asunto(s)
Cálculos , Neoplasias , Evolución Biológica , Aptitud Genética , Genotipo , Humanos , Modelos Genéticos , Neoplasias/genética , Fenotipo , Selección GenéticaRESUMEN
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, with overall long-term survival rates of â¼65-70%. Thus, additional molecular insights and representative models are critical for identifying and evaluating new treatment modalities. Using MyoD-Cre-mediated introduction of mutant K-RasG12D and perturbations in p53, we developed a novel genetically engineered mouse model (GEMM) for RMS. The anatomic sites of primary RMS development recapitulated human disease, including tumors in the head, neck, extremities and abdomen. We confirmed RMS histology and diagnosis through Hematoxylin and Eosin staining, and positive immunohistochemical staining for desmin, myogenin, and phosphotungstic acid-Hematoxylin. Cell lines from GEMM tumors were established with the ability to engraft in immunocompetent mice with comparable histological and staining features as the primary tumors. Tail vein injection of cell lines had high metastatic potential to the lungs. Transcriptomic analyses of p53R172H/K-RasG12D GEMM-derived tumors showed evidence of high molecular homology with human RMS. Finally, pre-clinical use of these murine RMS lines showed similar therapeutic responsiveness to chemotherapy and targeted therapies as human RMS cell lines.
Asunto(s)
Rabdomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Sarcoma/metabolismo , Neoplasias de los Tejidos Blandos/metabolismo , Proteína p53 Supresora de Tumor/genéticaRESUMEN
The global impact of somatic structural variants (SSVs) on gene expression in pediatric brain tumors has not been thoroughly characterised. Here, using whole-genome and RNA sequencing from 854 tumors of more than 30 different types from the Children's Brain Tumor Tissue Consortium, we report the altered expression of hundreds of genes in association with the presence of nearby SSV breakpoints. SSV-mediated expression changes involve gene fusions, altered cis-regulation, or gene disruption. SSVs considerably extend the numbers of patients with tumors somatically altered for critical pathways, including receptor tyrosine kinases (KRAS, MET, EGFR, NF1), Rb pathway (CDK4), TERT, MYC family (MYC, MYCN, MYB), and HIPPO (NF2). Compared to initial tumors, progressive or recurrent tumors involve a distinct set of SSV-gene associations. High overall SSV burden associates with TP53 mutations, histone H3.3 gene H3F3C mutations, and the transcription of DNA damage response genes. Compared to adult cancers, pediatric brain tumors would involve a different set of genes with SSV-altered cis-regulation. Our comprehensive and pan-histology genomic analyses reveal SSVs to play a major role in shaping the transcriptome of pediatric brain tumors.
Asunto(s)
Neoplasias Encefálicas/genética , Reordenamiento Génico , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Mutación , Pediatría/estadística & datos numéricos , Análisis de Secuencia de ARN , Secuenciación del ExomaRESUMEN
The phosphoinositide-3-kinase like kinases (PIKK) such as ATM and ATR play a key role in initiating the cellular DNA damage response (DDR). One key ATM target is the cyclin-dependent kinase inhibitor p27Kip1 that promotes G1 arrest. ATM activates p27Kip1-induced arrest in part through phosphorylation of p27Kip1 at Serine 140. Here we show that this site is dephosphorylated by the type 2C serine/threonine phosphatase, WIP1 (Wildtype p53-Induced Phosphatase-1), encoded by the PPM1D gene. WIP1 has been shown to dephosphorylate numerous ATM target sites in DDR proteins, and its overexpression and/or mutation has often been associated with oncogenesis. We demonstrate that wildtype, but not phosphatase-dead WIP1, efficiently dephosphorylates p27Kip1 Ser140 both in vitro and in cells and that this dephosphorylation is sensitive to the WIP1-specific inhibitor GSK 2830371. Increased expression of wildtype WIP1 reduces stability of p27Kip1 while increased expression of similar amounts of phosphatase-dead WIP1 has no effect on p27Kip1 protein stability. Overexpression of wildtype p27Kip1 reduces cell proliferation and colony forming capability relative to the S140A (constitutively non-phosphorylated) form of p27. Thus, WIP1 plays a significant role in homeostatic modulation of p27Kip1 activity following activation by ATM.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Fosfatasa 2C/metabolismo , Serina/metabolismo , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Células HEK293 , Humanos , Células MCF-7 , Mutación/genética , Fosfopéptidos/metabolismo , Fosforilación , Estabilidad Proteica , Reproducibilidad de los Resultados , Ensayo de Tumor de Célula MadreRESUMEN
The TP53 tumor suppressor gene is frequently mutated in human cancers. An analysis of five data platforms in 10,225 patient samples from 32 cancers reported by The Cancer Genome Atlas (TCGA) enables comprehensive assessment of p53 pathway involvement in these cancers. More than 91% of TP53-mutant cancers exhibit second allele loss by mutation, chromosomal deletion, or copy-neutral loss of heterozygosity. TP53 mutations are associated with enhanced chromosomal instability, including increased amplification of oncogenes and deep deletion of tumor suppressor genes. Tumors with TP53 mutations differ from their non-mutated counterparts in RNA, miRNA, and protein expression patterns, with mutant TP53 tumors displaying enhanced expression of cell cycle progression genes and proteins. A mutant TP53 RNA expression signature shows significant correlation with reduced survival in 11 cancer types. Thus, TP53 mutation has profound effects on tumor cell genomic structure, expression, and clinical outlook.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica , Pérdida de Heterocigocidad , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Clonal hematopoiesis (CH), in which stem cell clones dominate blood production, becomes increasingly common with age and can presage malignancy development. The conditions that promote ascendancy of particular clones are unclear. We found that mutations in PPM1D (protein phosphatase Mn2+/Mg2+-dependent 1D), a DNA damage response regulator that is frequently mutated in CH, were present in one-fifth of patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome and strongly correlated with cisplatin exposure. Cell lines with hyperactive PPM1D mutations expand to outcompete normal cells after exposure to cytotoxic DNA damaging agents including cisplatin, and this effect was predominantly mediated by increased resistance to apoptosis. Moreover, heterozygous mutant Ppm1d hematopoietic cells outcompeted their wild-type counterparts in vivo after exposure to cisplatin and doxorubicin, but not during recovery from bone marrow transplantation. These findings establish the clinical relevance of PPM1D mutations in CH and the importance of studying mutation-treatment interactions. VIDEO ABSTRACT.
Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Células Clonales/efectos de los fármacos , Doxorrubicina/farmacología , Hematopoyesis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Proteína Fosfatasa 2C/genética , Anciano , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Cisplatino/química , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HEK293 , Hematopoyesis/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Persona de Mediana Edad , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteína Fosfatasa 2C/metabolismoRESUMEN
Osteosarcoma (OS) is a highly aggressive mesenchymal malignancy and the most common primary bone tumor in the pediatric population. OS frequently presents with or develops distal metastases. Patients with metastatic disease have extremely poor survival rates, thus necessitating improved molecular insights into OS metastatic biology. Utilizing our previously characterized genetically engineered mouse model (GEMM) of metastatic OS, we identified enhanced differential expression of Transglutaminase-2 (TGM2) in metastatic OS. However, the role of TGM2 in sarcoma development and metastatic progression remains largely undefined. To further investigate the role of TGM2 in OS metastasis, we performed both gain- and loss-of-function studies for TGM2 in human and mouse OS cell lines. Our data provide evidence that enhanced expression of TGM2 in metastatic OS contributes to migratory and invasive phenotypes. Besides the effects on metastatic phenotypes, we also observed that TGM2 contributes to OS stem-like properties. In addition, treatment with transglutaminase inhibitors had analogous effects on proliferation and migration to TGM2 knockdown. Finally, in vivo xenograft studies demonstrated that TGM2 functionally alters metastatic potential and survival outcome. Together, these data highlight TGM2 as a pro-metastatic factor in OS and a potential avenue for future therapeutic intervention to inhibit metastatic disease.
RESUMEN
Scientific progress depends on formulating testable hypotheses informed by the literature. In many domains, however, this model is strained because the number of research papers exceeds human readability. Here, we developed computational assistance to analyze the biomedical literature by reading PubMed abstracts to suggest new hypotheses. The approach was tested experimentally on the tumor suppressor p53 by ranking its most likely kinases, based on all available abstracts. Many of the best-ranked kinases were found to bind and phosphorylate p53 (P value = 0.005), suggesting six likely p53 kinases so far. One of these, NEK2, was studied in detail. A known mitosis promoter, NEK2 was shown to phosphorylate p53 at Ser315 in vitro and in vivo and to functionally inhibit p53. These bona fide validations of text-based predictions of p53 phosphorylation, and the discovery of an inhibitory p53 kinase of pharmaceutical interest, suggest that automated reasoning using a large body of literature can generate valuable molecular hypotheses and has the potential to accelerate scientific discovery.
Asunto(s)
Indización y Redacción de Resúmenes , Quinasas Relacionadas con NIMA/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Células HCT116 , Células HEK293 , Humanos , Quinasas Relacionadas con NIMA/genética , Procesamiento de Lenguaje Natural , Fosforilación , PubMed , Proteína p53 Supresora de Tumor/genéticaRESUMEN
DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in â¼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy.
Asunto(s)
Genoma Humano , Neoplasias/genética , Reparación del ADN por Recombinación , Línea Celular Tumoral , Daño del ADN , Silenciador del Gen , Humanos , Pérdida de Heterocigocidad , Aprendizaje Automático , Mutación , Neoplasias/clasificación , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3-5 months) and old (19-24 months) mice. Activation of KrasG12D in old mice resulted in shorter survival and development of higher-grade lung tumors. Six weeks after KrasG12D activation, old lung tissues contained higher numbers of adenomas than their young tissue counterparts. Lung tumors in old mice displayed higher proliferation rates, as well as attenuated DNA damage and p53 tumor suppressor responses. Gene expression comparison of lung tumors from young and old mice revealed upregulation of extracellular matrix-related genes in young tumors, indicative of a robust cancer-associated fibroblast response. In old tumors, numerous inflammation-related genes such as Ccl7, IL-1ß, Cxcr6, and IL-15ra were consistently upregulated. Increased numbers of immune cells were localized around the periphery of lung adenomas from old mice. Our experiments indicate that more aggressive lung tumor formation in older KrasG12D mice may be in part the result of subdued tumor suppressor and DNA damage responses, an enhanced inflammatory milieu, and a more accommodating tissue microenvironment.
Asunto(s)
Envejecimiento/fisiología , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Inflamación/genética , Neoplasias Pulmonares/genética , Animales , Modelos Animales de Enfermedad , Genes ras/genética , Ratones , Mutación/genética , Transducción de Señal/genéticaRESUMEN
Ewing Sarcoma (ES) is a highly aggressive bone tumor with peak incidence in the adolescent population. It has a high propensity to metastasize, which is associated with dismal survival rates of approximately 25%. To further understand mechanisms of metastasis we investigated microRNA regulatory networks in ES. Our studies focused on miR-130b due to our analysis that enhanced expression of this microRNA has clinical relevance in multiple sarcomas, including ES. Our studies provide insights into a novel positive feedback network involving the direct regulation of miR-130b and activation of downstream signaling events contributing toward sarcoma metastasis. Specifically, we demonstrated miR-130b induces proliferation, invasion, and migration in vitro and increased metastatic potential in vivo. Using microarray analysis of ES cells with differential miR-130b expression we identified alterations in downstream signaling cascades including activation of the CDC42 pathway. We identified ARHGAP1, which is a negative regulator of CDC42, as a novel, direct target of miR-130b. In turn, downstream activation of PAK1 activated the JNK and AP-1 cascades and downstream transcriptional targets including IL-8, MMP1 and CCND1. Furthermore, chromatin immunoprecipitation of endogenous AP-1 in ES cells demonstrated direct binding to an upstream consensus binding site within the miR-130b promoter. Finally, small molecule inhibition of PAK1 blocked miR-130b activation of JNK and downstream AP-1 target genes, including primary miR-130b transcripts, and miR-130b oncogenic properties, thus identifying PAK1 as a novel therapeutic target for ES. Taken together, our findings identify and characterize a novel, targetable miR-130b regulatory network that promotes ES metastasis.
Asunto(s)
Neoplasias Óseas/patología , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , MicroARNs/genética , Sarcoma de Ewing/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Retroalimentación Fisiológica , Proteínas Activadoras de GTPasa/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estadificación de Neoplasias , Pronóstico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismoRESUMEN
Accurate assessment of TP53 gene status in sporadic tumors and in the germline of individuals at high risk of cancer due to Li-Fraumeni Syndrome (LFS) has important clinical implications for diagnosis, surveillance, and therapy. Genomic data from more than 20,000 cancer genomes provide a wealth of information on cancer gene alterations and have confirmed TP53 as the most commonly mutated gene in human cancer. Analysis of a database of 70,000 TP53 variants reveals that the two newly discovered exons of the gene, exons 9ß and 9γ, generated by alternative splicing, are the targets of inactivating mutation events in breast, liver, and head and neck tumors. Furthermore, germline rearrange-ments in intron 1 of TP53 are associated with LFS and are frequently observed in sporadic osteosarcoma. In this context of constantly growing genomic data, we discuss how screening strategies must be improved when assessing TP53 status in clinical samples. Finally, we discuss how TP53 alterations should be described by using accurate nomenclature to avoid confusion in scientific and clinical reports. Cancer Res; 77(6); 1250-60. ©2017 AACR.
Asunto(s)
Variación Genética/genética , Neoplasias/genética , Guías de Práctica Clínica como Asunto/normas , Control de Calidad , Proteína p53 Supresora de Tumor/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Estudios de Validación como AsuntoRESUMEN
The phosphatase Wip1 attenuates the DNA damage response (DDR) by removing phosphorylation marks from a number of DDR proteins (p53, MDM2, Chk1/2, p38). Wip1 also dephosphorylates and inactivates RelA. Notably, LZAP, a putative tumor suppressor, has been linked to dephosphorylation of several of these substrates, including RelA, p38, Chk1, and Chk2. LZAP has no known catalytic activity or functional motifs, suggesting that it exerts its effects through interaction with other proteins. Here we show that LZAP binds Wip1 and stimulates its phosphatase activity. LZAP had been previously shown to bind many Wip1 substrates (RelA, p38, Chk1/2), and our results show that LZAP also binds the previously identified Wip1 substrate, MDM2. This work identifies 2 novel Wip1 substrates, ERK1 and HuR, and demonstrates that HuR is a binding partner of LZAP. Pleasingly, LZAP potentiated Wip1 catalytic activity toward each substrate tested, regardless of whether full-length substrates or phosphopeptides were utilized. Since this effect was observed on ERK1, which does not bind LZAP, as well as for each of 7 peptides tested, we hypothesize that LZAP binding to the substrate is not required for this effect and that LZAP directly binds Wip1 to augment its phosphatase activity.
Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Biocatálisis , Línea Celular Tumoral , Células HEK293 , Humanos , Fosfopéptidos/metabolismo , Fosforilación , Unión Proteica , Especificidad por SustratoRESUMEN
BACKGROUND: Osteosarcoma (OS), which has a high potential for developing metastatic disease, is the most frequent malignant bone tumor in children and adolescents. Molecular analysis of a metastatic genetically engineered mouse model of osteosarcoma identified enhanced expression of Secreted Frizzled-Related Protein 2 (sFRP2), a putative regulator of Wnt signaling within metastatic tumors. Subsequent analysis correlated increased expression in the human disease, and within highly metastatic OS cells. However, the role of sFRP2 in osteosarcoma development and progression has not been well elucidated. METHODS: Studies using stable gain or loss-of-function alterations of sFRP2 within human and mouse OS cells were performed to assess changes in cell proliferation, migration, and invasive ability in vitro, via both transwell and 3D matrigel assays. In additional, xenograft studies using overexpression of sFRP2 were used to assess effects on in vivo metastatic potential. RESULTS: Functional studies revealed stable overexpression of sFRP2 within localized human and mouse OS cells significantly increased cell migration and invasive ability in vitro and enhanced metastatic potential in vivo. Additional studies exploiting knockdown of sFRP2 within metastatic human and mouse OS cells demonstrated decreased cell migration and invasion ability in vitro, thus corroborating a critical biological phenotype carried out by sFRP2. Interestingly, alterations in sFRP2 expression did not alter OS proliferation rates or primary tumor development. CONCLUSIONS: While future studies further investigating the molecular mechanisms contributing towards this sFRP2-dependent phenotype are needed, our studies clearly provide evidence that aberrant expression of sFRP2 can contribute to the invasive and metastatic potential for osteosarcoma.
Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proteínas de la Membrana/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/patología , Animales , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/genética , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Osteosarcoma/genéticaRESUMEN
The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of ß-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis.
Asunto(s)
Adenocarcinoma/genética , Proteínas de Unión al ADN/genética , Neoplasias Duodenales/genética , Mutación , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética , Vía de Señalización Wnt , Adenocarcinoma/metabolismo , Ampolla Hepatopancreática/patología , Secuencia de Bases , Neoplasias Duodenales/metabolismo , Inestabilidad Genómica , Humanos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Neoplasias Pancreáticas/metabolismoRESUMEN
BACKGROUND: Osteosarcoma (OS) is the most common bone malignancy in the paediatric population, principally affecting adolescents and young adults. Minimal advancements in patient prognosis have been made over the past two decades because of the poor understanding of disease biology. Runx2, a critical transcription factor in bone development, is frequently amplified and overexpressed in OS. However, the molecular and biological consequences of Runx2 overexpression remain unclear. METHODS: si/shRNA and overexpression technology to alter Runx2 levels in OS cells. In vitro assessment of doxorubicin (doxo)-induced apoptosis and in vivo chemosensitivity studies. Small-molecule inhibitor of c-Myc transcriptional activity was used to assess its role. RESULTS: Loss of Runx2 sensitises cells to doxo-induced apoptosis both in vitro and in vivo. Furthermore, in conjunction with chemotherapy, decreasing Runx2 protein levels activates both the intrinsic and extrinsic apoptotic pathways. Transplanted tumour studies demonstrated that loss of endogenous Runx2 protein expression enhances caspase-3 cleavage and tumour necrosis in response to chemotherapy. Finally, upon doxo-treated Runx2 knockdown OS cells there was evidence of enhanced c-Myc expression and transcriptional activity. Inhibition of c-Myc under these conditions resulted in decreased activation of apoptosis, therefore insinuating a role for c-Myc in dox-induced activation of apoptotic pathways. CONCLUSIONS: Therefore, we have established a novel molecular mechanism by which Runx2 provides a chemoprotective role in OS, indicating that in conjunction to standard chemotherapy, targeting Runx2 may be a new therapeutic strategy for patients with OS.
Asunto(s)
Apoptosis/genética , Neoplasias Óseas/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteosarcoma/genética , Animales , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Caspasa 3/genética , Línea Celular Tumoral , Doxorrubicina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Ratones Desnudos , Osteosarcoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/genética , ARN Interferente Pequeño/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genéticaRESUMEN
Sézary syndrome is a rare leukemic form of cutaneous T cell lymphoma characterized by generalized redness, scaling, itching and increased numbers of circulating atypical T lymphocytes. It is rarely curable, with poor prognosis. Here we present a multiplatform genomic analysis of 37 patients with Sézary syndrome that implicates dysregulation of cell cycle checkpoint and T cell signaling. Frequent somatic alterations were identified in TP53, CARD11, CCR4, PLCG1, CDKN2A, ARID1A, RPS6KA1 and ZEB1. Activating CCR4 and CARD11 mutations were detected in nearly one-third of patients. ZEB1, encoding a transcription repressor essential for T cell differentiation, was deleted in over one-half of patients. IL32 and IL2RG were overexpressed in nearly all cases. Our results demonstrate profound disruption of key signaling pathways in Sézary syndrome and suggest potential targets for new therapies.
Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes , Mutación/genética , Síndrome de Sézary/genética , Neoplasias Cutáneas/genética , Linfocitos T/metabolismo , Estudios de Casos y Controles , Exoma/genética , Regulación Neoplásica de la Expresión Génica , Flujo Genético , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Activación de Linfocitos , Pronóstico , Síndrome de Sézary/mortalidad , Síndrome de Sézary/patología , Transducción de Señal , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Tasa de Supervivencia , Linfocitos T/citologíaRESUMEN
Osteosarcomas (OSs) are characterized by high levels of genomic instability (GI). To gain insights into the GI and its contribution toward understanding the genetic basis of OS, we characterized 19 primary and 13 metastatic mouse tumors in a genetically engineered novel mouse model of OS by a combination of genomic techniques. Through the bone-specific deletion of the wild-type Trp53 locus or activation of a metastatic-promoting missense R172Hp53 allele, C57BL/6 mice developed either localized or metastatic OS. Subsequent tumors were isolated and primary cultures created from primary bone and/or distal metastatic lesions, for example, lung and liver. These tumors exhibited high levels of GI with complex chromosomal rearrangements, amplifications, and deletions comparable to human OS. The combined genomic approaches identified frequent amplification of chromosome 15D1 and loss of 11B4 by CGH and/or SKY. Both 15D1 and 11B4 have homology with frequently altered chromosomal bands 8q24 and 17p13 in human OS, respectively. Subsequent array CGH, FISH, and qRT-PCR analysis identified coamplification and overexpression of Myc/Pvt1 transcripts from the 15D1 amplicon and loss and decreased expression of the Nlrp1b from 11B4. The Nlrp1 gene is the key mediator of apoptosis and interacts strongly with caspase 2.