Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 1): 132330, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750840

RESUMEN

Developing flame retardant cotton fabrics (CF) is crucial for minimizing the harm caused by fires to people. To improve the flame retardancy of CF, this paper has synthesized a novel flame retardant called diboraspiro tetra phosphonate ammonium salt (N-PDBDN). The structure of N-PDBDN has been analyzed using FT-IR and NMR. Treating CF with N-PDBDN can increase the limiting oxygen index (LOI) to 36.2 % with a weight gain of 10.1 %. Moreover, even after undergoing 50 laundering cycles (LCs), the LOI remains at 27.1 %, indicating good flame retardancy and durability. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) show the presence of P and N elements on N-PDBDN treated CF, suggesting successful bonding between N-PDBDN and cellulose. Thermogravimetric analysis (TGA) results demonstrate that the addition of N-PDBDN significantly enhances the thermal stability and carbon formation ability of CF. Furthermore, cone calorimetry tests reveal reduced heat release rates (HRR), prolonged time to ignition (TTI), and 38 % lower total heat release (THR) in CF treated with N-PDBDN compared with pure cotton. Finally, a potential flame retardant mechanism involving N-PDBDN is proposed. These findings indicate that incorporating an ammonium phosphate group into CF can effectively improve the flame retardancy and durability.


Asunto(s)
Fibra de Algodón , Retardadores de Llama , Textiles , Nitrógeno/química , Fósforo/química , Espectroscopía Infrarroja por Transformada de Fourier , Organofosfonatos/química , Termogravimetría
2.
Int J Biol Macromol ; 268(Pt 1): 131612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631572

RESUMEN

Cotton fabric is extensively utilized due to its numerous applications, but the flammability associated with cotton fabric poses potential security risks to individuals. A halogen-free efficient flame retardant named poly [(tetramethylcyclosiloxyl spirocyclic pentaerythritol)-piperazin phosphate] (PCPNTSi) was developed to consolidate the fire retardance of cotton fabrics. After PCPNTSi treatment, the limiting oxygen index (LOI) of cotton fabric with 30 % weight gain (CP3) was raised to 32.8 %. In the vertical flammability test (VFT), CP3 has self-extinguished performance with a char length of 8.7 cm. The heat release rate (HRR) of cotton fabric with 20 % weight gain (CP2) is 78.8 % lower than that of pure cotton fabric (CP0). In addition, the total smoke release (TSP) of CP2 is 41.7 % lower than that of CP0, indicating PCPNTSi gives cotton fabric a good capability to inhibit smoke release. Finally, the possible flame retardant mechanism was discussed by the data of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FT-IR) and thermogravimetric infrared spectroscopy (TG-IR). The results show that PCPNTSi is an intumescent flame retardant acting in both gas phase and solid phase.


Asunto(s)
Fibra de Algodón , Retardadores de Llama , Retardadores de Llama/análisis , Fibra de Algodón/análisis , Nitrógeno/química , Textiles/análisis
3.
Int J Biol Macromol ; 260(Pt 1): 129497, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232884

RESUMEN

A new synergistic flame retardant named Bisiminopropyl trimethoxysilane-1,3,5-triazine-O-bicyclic pentaerythritol phosphate (BTPODE) was synthesized, which is a type of Si/P/N flame retardant. This was accomplished by grafting aminopropyl trimethoxysilane and bicyclic pentaerythritol phosphate onto a triazine ring structure, serving as an intermediate. The structure of BTPODE was determined using nuclear magnetic resonance (1H NMR, 13C NMR, and 31P NMR) and Fourier transform infrared spectroscopy (FT-IR). SEM was used to detect the surface morphology of cotton fabrics, which suggested that BTPODE had been resoundingly stick to cotton fabrics. The flame retardant properties of cotton fabrics were evaluated by measuring the limiting oxygen index (LOI) and conducting vertical flammability experiments. Cotton fabrics with a weight gain of 20.73 % achieved an LOI value of 32.5 %. Thermogravimetric (TG) experiments demonstrated the samples' good thermostability. Furthermore, under nitrogen conditions, the char residue of cotton fabric with a weight gain of 20.73 % was 36.85 %. The cone calorimetry test (CONE) showed a significant reduction in the TSP value, indicating a certain level of smoke suppression performance. Finally, based on the obtained experimental results, the fire-retardant mechanism principle of the flame retardant was deduced.


Asunto(s)
Retardadores de Llama , Glicoles de Propileno , Silanos , Humanos , Triazinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Fosfatos , Aumento de Peso
4.
Int J Biol Macromol ; 256(Pt 1): 128457, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016602

RESUMEN

In response to the new concept of green sustainability, it is necessary to expand the functionality of bio-based natural fibers (such as cotton fabrics) to replace fabrics made from fossil fuels. One potential way of achieving this is through the use of phosphorus, boron and nitrogen based organic flame retardants. This article designs a special flame retardant system with high efficiency, high durability, and enhanced fabric strength. An "H" shaped flame retardant (TBSA) is synthesized using hydroxyethyl methylene phosphate, pentaerythritol diborate, and cyanuric chloride. After simple treatment, flame retardant fabric (TBSA/Cotton) is obtained, with a LOI value of 48.8 %. Self extinguishing is completing in the vertical flame test. The high FR efficiency reflects the progressiveness of multi flame retardant elements. It is worth noting that TBSA/Cotton exhibits excellent durability and improves the strength of the fabric. This is attributed to the covalent bonding between the "H" type flame retardant and multiple cellulose molecules, which compensates for the cracks and holes at the submicroscopic scale of natural cellulose and weakens the molecular slip effect. The research results of this article provide a good opportunity for the development of biomass cellulose flame retardant materials.


Asunto(s)
Retardadores de Llama , Textiles , Hidrógeno , Protones , Celulosa
5.
Int J Biol Macromol ; 259(Pt 1): 129121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159694

RESUMEN

Imparting flame retardancy to polyester fabrics is still a pressing issue for the textile industry. To this end, a composite coating was developed by phosphite, pentamethyldisiloxane, urea and sodium alginate, and then applied together with calcium chloride to prepare flame-retardant polyester fabrics. The optimized polyester fabrics named PF-HUSC exhibited a rough surface with P, Si, N and Ca element distributions, as observed by scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). Flame retardancy evaluations showed that the damaged length of PF-HUSC with a limiting oxygen index (LOI) value of 35.3 ± 0.3 % was reduced from the contrastive 17.6 ± 0.4 cm to 4.6 ± 0.2 cm after vertical burning test. Thermogravimetric (TG) test confirmed that PF-HUSC retained a char residue as high as 35.1 % at 700 °C. Cone calorimetry test displayed that the total heat release (THR) and total smoke production (TSP) values of PF-HUSC were reduced to 3.1 MJ/m2 and 1.1 m2, respectively, as compared to those of pure polyester fabrics. More importantly, PF-HUSC still exhibited higher LOI value than that of pure polyester fabrics after 25 washing cycles. Hence, the coating scheme is considered as a new method to expand the preparation of flame-retardant polyester fabrics.


Asunto(s)
Alginatos , Retardadores de Llama , Cloruro de Calcio , Calorimetría , Oxígeno , Poliésteres
6.
Langmuir ; 38(12): 3711-3719, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35290066

RESUMEN

In this study, sodium carboxymethyl cellulose/poly(acrylic acid) (CMC/PAA) microgels were successfully synthesized via visible-light-triggered free-radical polymerization to remove methylene blue (MB) from water. The microgels had a loose and porous 3-D network structure, exhibiting excellent adsorption performance. The equilibrium adsorption capacity and the removal efficiency of the microgels reached approximately 1479 mg/g and 97%, respectively, when the initial concentration of MB was 300 mg/L. The adsorption kinetics was well described by the pseudo-second-order model, and the adsorption isotherms followed the Langmuir isothermal model. Notably, CMC/PAA microgels could naturally settle and be separated from the MB solution. Furthermore, the recovery efficiency of the regenerated CMC/PAA microgels reached approximately 94% after five adsorption-desorption cycles. Therefore, the microgels could be used as promising adsorbents due to the advantages of high adsorption capacity, fast removal rate, and reusability.


Asunto(s)
Microgeles , Contaminantes Químicos del Agua , Resinas Acrílicas , Adsorción , Carboximetilcelulosa de Sodio/química , Cationes/química , Colorantes/química , Cinética , Azul de Metileno/química , Polimerizacion , Sodio , Contaminantes Químicos del Agua/química
7.
Polymers (Basel) ; 12(7)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664623

RESUMEN

To improve the water solubility of phosphoramidate siloxane and decrease the amount of flame-retardant additives used in the functional coating for cotton fabrics, a water-soluble phosphoramidate siloxane polymer (PDTSP) was synthesized by sol-gel technology and flame-retardant cotton fabrics were prepared with a multistep coating process. A vertical flammability test, limited oxygen index (LOI), thermogravimetric analysis, and cone calorimetry were performed to investigate the thermal behavior and flame retardancy of PDTSP-coated fabrics. The coated cotton fabrics and their char residues after combustion were studied by attenuated total reflection infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results presented that PDTSP-coated cotton fabrics had good flame retardancy and char-forming properties. PDTSP coating was demonstrated to posess gas-phase flame-retardant mechanism as well as a condensed phase flame-retardant mechanism, which can be confirmed by thermogravimetric analysis-Fourier transform infrared spectroscopy (TG-IR) and cone calorimetry test. Also, the preparation process had little effect on the tensile strength of cotton fabrics, although the air permeability and whiteness had a slight decrease. After different washing cycles, the coated samples still maintained good char-forming properties.

8.
Carbohydr Polym ; 237: 116173, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32241447

RESUMEN

In this study, a fully bio-based coating was constructed by layer-by-layer deposition of chitosan (CS) and ammonium phytate (AP), to obtain fire-safety and antibacterial cotton fabrics. With about 8% weight gains of CS/AP coatings, the treated cotton fabrics self-extinguished in the vertical burning test. The data obtained from cone calorimetry showed CS/AP/cotton had much lower smoke and heat production, which indicated the fire safety of the fabrics was significantly improved for the presence of CS/AP coatings. The flame-retardant mechanism of this system was finally proposed according to the analysis of gaseous products and char residues. What is more, CS/AP coatings had higher antibacterial activity in Gram-negative bacteria and did improve the tensile strength of cotton fabrics compared with AP coating. With its ease of operation and use of non-toxic chemicals, this fully bio-based coating can further offer a feasible flame-retardant and antibacterial solution of the inflammable natural fabrics.


Asunto(s)
Compuestos de Amonio , Antibacterianos , Quitosano , Fibra de Algodón , Retardadores de Llama , Ácido Fítico , Textiles , Calorimetría , Calor
9.
Polymers (Basel) ; 11(11)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703328

RESUMEN

A novel linear α, ω-di (chloro phosphoramide)-terminated polydimethylsiloxane (CPN-PDMS) was successfully synthesized and utilized as a formaldehyde-free water-repellent and flame-retardant for cotton fabrics. The flame retardancy of treated cotton fabrics was estimated by limiting oxygen index (LOI) test, vertical flammability test, and cone calorimetry test. The cotton fabrics treated with 350 g/L CPN-PDMS obtained excellent flame retardancy with an LOI value of 30.6% and the char length was only 4.3 cm. Combustion residues were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis. Results show that CPN-PDMS can effectively enhance water repellency and fire resistance of cotton fabrics. Furthermore, the breaking strength test and the whiteness test strongly prove that the tensile strength and whiteness of the treated cotton fabrics were slightly lower than that of the pure cotton fabrics. The wash stability test showed that after 30 laundering cycles, the treated cotton fabrics still had an LOI value of 28.5% and a water-repellent effect of grade 80, indicating that CPN-PDMS was an excellent washing durability additive. In summary, these property enhancements of treated cotton fabrics were attributed to the synergistic effect of silicon-phosphorus-nitrogen elements in CPN-PDMS.

10.
RSC Adv ; 9(63): 36788-36795, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35539061

RESUMEN

In this study, polyvinyl alcohol (PVA) and benzoguanamine (BG) modified melamine-formaldehyde (MF) resins were used to prepare two high-pressure laminates (HPLs) as well as a pure cellulose paper laminate and core sandwich laminates with the core material of aramid paper (AP) or polypropylene non-woven fabric (PPNF). The tensile strength, flame retardancy and antifouling properties of the modified MF resin laminates were studied and compared with the MF resin laminate. The tensile test results showed that the MF resins modified with BG and PVA improved the tensile strength of the impregnated paper. In comparison with pure kraft cellulose paper laminates, the aramid paper core laminates displayed comparatively higher tensile strength. Antifouling test results indicated that modified MF resin laminates had no obvious change while the MF resin laminate was stained. Thermal stability of the modified resins was investigated by thermogravimetric (TG) analysis and the results showed that the char yield of modified MF resin was higher than that of the unmodified MF resin due to the addition of BG. The modified MF resin laminates exhibited better flame retardancy properties through the analysis of limiting oxygen index (LOI), vertical burning and cone calorimetry (CONE) compared to the MF resin laminate. In addition, the flame retardancy of laminates was further enhanced when prepared with core materials of aramid paper. Scanning electron microscopy analysis of residue char after CONE tests showed that the AP-core laminate formed a dense and stable char layer compared with the loose char layer of the PPNF-core laminate. This study shows a new direction to develop sustainable high-performance flame retardant laminates for commercial decoration application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA