RESUMEN
Lipoprotein(a) is a well-known independent risk factor for coronary artery disease (CAD) and primarily determined by variation in the LPA gene coding for the apolipoprotein(a) moiety. Our study purpose was to evaluate the association between the human LPA gene polymorphisms and CAD in Han and Uyghur populations in Xinjiang, China. A case-control study was conducted with 831 Han people (392 CAD patients and 439 control subjects) and 829 Uygur people (513 CAD patients and 316 control subjects). All participants were genotyped for the same 3 single nucleotide polymorphisms (rs1801693, rs6923877, and rs9364559) of the LPA gene by a Real-time PCR instrument. In CAD patients, the levels of lipoprotein(a) were significantly higher in the Han population with the C/C genotype at the rs1801693 (Pâ =â .018) and the A/A genotype at the rs9364559 (Pâ =â .029) than in the Uyghur population. The polymorphisms rs1801693, rs6923877, and rs9364559 were found to be associated with CAD in the Han population. For men, the distribution of rs1801693 in genotypes, alleles and recessive model (CC vs CTâ +â TT) showed a significant difference (all Pâ <â .05), and the difference in recessive model was retained after adjustment for covariates (odds ratio [OR]: 0.557, 95% confidence interval [CI]: 0.355-0.874, Pâ =â .011). But the distribution of rs6923877 in genotypes and dominant model (GG vs AGâ +â AA) showed a significant difference (both Pâ <â .05) in both men and women, and the difference was kept in dominant model after adjustment (OR: 1.473, 95% CI:1.009-2.148, Pâ =â .045). For women, a significant difference was found in the distribution of rs9364559 in the alleles and dominant model (AA vs AGâ +â GG) (for alleles: Pâ =â .021, for dominant model: Pâ =â .025, OR: 0.560, 95% CI:0.350-0.898, Pâ =â .016) after adjustment. Polymorphisms rs1801693, rs6923877, and rs9364559 of the LPA gene are associated with CAD in the Han population in Xinjiang Uygur Autonomous Region of China.
Asunto(s)
Enfermedad de la Arteria Coronaria , Lipoproteína(a) , Femenino , Humanos , Masculino , Estudios de Casos y Controles , China/epidemiología , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Lipoproteína(a)/genética , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: To determine whether TG/HDL-C ratio, which has been shown to be an indicator of the metabolic syndrome (MetS) and insulin resistance (IR), can predict cardiovascular risk factors in the Chinese Han population in Xinjiang. METHODS: The cardiovascular risk survey (CRS) was conducted from October 2007 to March 2010. A total of 14,618 representative participants were selected using a four-stage stratified sampling method. A total of 5757 Han participants were included in the study. The present statistical analysis was restricted to the 5595 Han subjects who had complete anthropometric data. The sensitivity, specificity, and distance on the receiver operating characteristic (ROC) curve in each TG/HDL level were calculated. The shortest distance in the ROC curves was used to determine the optimal cutoff of the TG/HDL-C ratio for detecting cardiovascular risk factors. RESULTS: The prevalence of hypertension, hypercholesterolemia, and hypertriglyceridemia was higher with higher TG/HDL-C ratio for both men and women. The TG/HDL-C ratio was positively associated with systolic blood pressure, diastolic blood pressure, and serum concentrations of total cholesterol. The optimal TG/HDL-C ratio cutoffs for predicting hypertension, dyslipidemia, diabetes, and ≥2 of these risk factors for Han adults in Xinjiang were 1.3, 1.3, 1.4, and 1.4 in men and 0.9, 1.0, 1.0, and 1.1 in women, respectively. CONCLUSIONS: The evaluation of TG/HDL-C ratio should be considered for one of cardiovascular risk factor predictors among Han adults in Xinjiang.
Asunto(s)
Enfermedades Cardiovasculares/sangre , HDL-Colesterol/sangre , Complicaciones de la Diabetes/sangre , Dislipidemias/sangre , Hipertensión/sangre , Triglicéridos/sangre , Adulto , Anciano , Presión Sanguínea , Enfermedades Cardiovasculares/etnología , Enfermedades Cardiovasculares/etiología , China , Colesterol/sangre , Complicaciones de la Diabetes/etnología , Dislipidemias/complicaciones , Dislipidemias/etnología , Etnicidad , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/etnología , Masculino , Persona de Mediana Edad , Curva ROC , Factores de RiesgoRESUMEN
OBJECTIVE: An imbalance in sex hormone ratios has been identified in coronary heart disease (CHD), and as a key enzyme in the conversion of androgen to estrogen, aromatase plays an important role in the balance of sex hormone levels. However, there is a paucity of research into the potential roles of aromatase in CHD. In this study, we investigated associations between single-nucleotide polymorphisms (SNPs) in the CYP19 gene, which encodes aromatase, and CHD. METHODS: We collected 1706 blood samples from CHD patients and control participants and used propensity score matching techniques to match case and control groups with respect to confounding factors. In a final study population, including 596 individuals, we conducted a case-control study to identify associations between three SNPs in CYP19 and CHD using χ(2) or Fisher exact tests, and binary logistic regression analysis. Differences in lipid levels and parameters of echocardiography among individuals with different genotypes were assessed by one-way analysis of variance. RESULTS: The distributions of rs2289105 alleles in the CYP19 gene differed significantly between the CHD and control groups (p = 0.014), and the heterozygote CT genotype was associated with a significantly lower risk of CHD compared to the homozygous wild-type CC genotype (p = 0.0063 and odds ratio = 0.575). However, blood lipid levels and echocardiographic parameters among individuals with different genotypes did not differ between the CHD and control groups. CONCLUSIONS: The CT genotype of the rs2289105 polymorphism in the CYP19 gene is associated with a decreased risk of CHD and may be a genetic marker of protection from CHD.
Asunto(s)
Aromatasa/genética , Enfermedad Coronaria/genética , Genotipo , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Femenino , Marcadores Genéticos , Humanos , Masculino , Persona de Mediana Edad , Factores de RiesgoRESUMEN
The present study was aimed to investigate the pathways, by which IL-27 regulates the expression of adherent molecule Mac-1, chemotactic factor receptor fMLP-R and pro-inflammatory cytokine IL-1beta in human neutrophils. Highly purified human neutrophils were isolated from peripheral blood using Ficoll-Hypaque gradients centrifugation and erythrocyte lysis. The mRNA expression of IL-27 receptor components (WSX-1/TCCR and gp130) in human neutrophils was detected by reverse transcription polymerase chain reaction (RT-PCR). After incubation with IL-27 and specific inhibitors (p38 MAPK inhibitor SB203580, PI3K inhibitor LY294002 and ERK inhibitor U0126), the mRNA levels of fMLP-R and IL-1beta were determined by real time RT-PCR, and the adherent molecule Mac-1 expression in human neutrophils was determined by flow cytometry. The IL-1beta level in culture supernatant of human neutrophils was assayed by radioimmunoassay. The results showed that IL-27 receptor components (WSX-1/TCCR and gp130) were constitutively expressed in human neutrophils. IL-27 down-regulated Mac-1 expression in human neutrophils (p<0.05). After incubation with specific inhibitors, SB203580, not LY294002 and U0126, inhibited the down-regulation of Mac-1 expression by IL-27. However, IL-27 up-regulated the mRNA expression of fMLP-R and IL-1beta, and increased the release of IL-1beta (p<0.05). Interestingly, LY294002, not SB203580 and U0126, inhibited the up-regulation of fMLP-R and IL-1beta by IL-27. It is concluded that the IL-27 may regulate the expression of Mac-1, fMLP-R and IL-1beta in human neutrophils through p38 MAPK and PI3K signal pathways.
Asunto(s)
Interleucinas/metabolismo , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Butadienos/farmacología , Cromonas/farmacología , Regulación hacia Abajo , Humanos , Imidazoles/farmacología , Interleucina-1beta/metabolismo , Antígeno de Macrófago-1/metabolismo , Morfolinas/farmacología , Nitrilos/farmacología , Piridinas/farmacología , Receptores de Formil Péptido/metabolismo , Regulación hacia ArribaRESUMEN
In order to evaluate whether mesenchymal stem cells (MSCs) from non-hematopoietic tissues are able to regulate megakaryocytopoiesis, we identified human MSCs from adult bone marrow (ABM), fetal pancreas (FPan) and umbilical cord (UC), and their abilities to support megakaryocyte (MK) differentiation from CD34(+) hematopoietic progenitor cells (HPCs) were comparatively studied. First, MSCs were isolated from ABM, FPan and UC then their growth kinetics, molecular characterization and mesodermal differentiation capacity were determined. ABM-MSCs, FPan-MSCs and UC-MSCs were irradiated and cocultured with human umbilical cord blood (UCB) CD34(+) cells, and the expansion efficiency of MK progenitor cells and MK formation were analysed and compared. Finally, SCF, IL-6 and GM-CSF expression by the three types of MSCs were also examined. Our results showed that FPan-MSCs and UC-MSCs shared most of the characteristic of ABM-MSCs, including morphology, immunophenotype, adipogenic and osteogenic differentiation potentials. Compared with ABM-MSCs, fetal MSCs had higher proliferative capacity. After 7 days' coculture, the maximal production of CD34(+)/CD41a(+) cells was obtained in a group of CD34(+) HPCs + ABM-MSCs. Furthermore, this group produced more MK colonies than other groups (p < 0.05). Surface antigen and ploidy analysis morphological observation demonstrated that a proportion of expanded cells in each group differentiated into mature MKs. ABM-MSCs, FPan-MSCs and UC-MSCs were revealed to express SCF, IL-6 and GM-CSF at mRNA level. We conclude that FPan-MSCs and UC-MSCs have the ability to promote megakaryocytopoiesis, while ABM-MSCs expand more MK progenitor cells from CD34(+) HPCs than MSCs from non-hematopoietic tissues and CD34(+) cells alone.
Asunto(s)
Células de la Médula Ósea/citología , Feto/citología , Células Progenitoras de Megacariocitos/citología , Células Madre Mesenquimatosas/citología , Páncreas/citología , Cordón Umbilical/citología , Adulto , Diferenciación Celular , Citometría de Flujo , Humanos , Páncreas/embriología , Valores de ReferenciaRESUMEN
BCR/ABL can cause chronic myelogenous leukaemia (CML) in part by altering the transcription of specific genes with growth- and/or survival-promoting functions. Recently, BCR/ABL has been shown to activate survivin, an important regulator of cell growth and survival, but the precise molecular mechanisms behind its expression and consequences thereof in CML cells remain unclear. Here, we reported that BCR/ABL promotes survivin expression and its cytoplasmic accumulation. The increase of survivin was largely controlled at the transcriptional level through a mechanism mediated by JAK2/PI3K signal pathways that activated c-Myc, leading to transactivation of survivin promoter. Dynamic down-regulation of survivin was a key event involved in imatinib-induced cell death while forced expression of survivin partially counteracted imatinib's effect on cell survival. Additionally, shRNA-mediated silencing of survivin or c-Myc eradicated colony formation of K562 cells in semi-solid culture system, implying an essential role for this transcriptional network in BCR/ABL-mediated cell transformation and survival. Finally, interruption of c-Myc activity by 10058-F4 exerted an anti-leukaemia effect with a synergistic interaction with imatinib and overcame the anti-apoptosis rescued by IL-3 supplement. In conclusion, we have identified JAK2/PI3K-mediated and c-Myc-dependent transactivation of survivin as a novel pathway in the transcriptional network orchestrated by BCR/ABL. These results suggest that the interference with this circuitry might be a potential utility for CML treatment.
Asunto(s)
Proteínas de Fusión bcr-abl/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Proto-Oncogénicas c-myc/fisiología , Transcripción Genética/fisiología , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Silenciador del Gen , Humanos , Proteínas Inhibidoras de la Apoptosis , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Reacción en Cadena de la Polimerasa , Transducción de Señal , SurvivinRESUMEN
Bmi-1 is a transcriptional repressor, which belongs to the polycomb group family. It has been demon- started that over-expression of Bmi-1 occurs in a variety of cancers, including several types of leukemia. Bmi-1 gene plays a key role in regulation of self-renewal in normal and leukemic stem cells. Acute myeloid leukemic cells lacking Bmi-1 undergo proliferation arrest and show signs of differentiation and apoptosis, which leads to the proposal of Bmi-1 as a potential target for therapeutic intervention in leukemia. The purpose of this study was to investigate the effect of short hairpin RNA (shRNA) targeting Bmi-1 on functions of K562 cell line. The shRNA eukaryotic expression vector targeting Bmi-1 was constructed and transfected into K562 cells through lipofectamine 2000. The mRNA and protein levels of Bmi-1 were detected by PCR and Western blot respectively. The proliferation of K562 after Bmi-1 silencing was measured by using MTT assay and clone formation assay. The cell cycle was detected by flow cytometry. The results indicated that among the four shRNA designed, there was a shRNA which efficiently interfered with the expression of Bmi-1. The results of PCR and Western blot validated that the Bmi-1 gene of K562 cells transfected with such a Bmi-1 shRNA was suppressed successfully. Although levels of Bmi-1 mRNA and protein were significantly reduced, delivery of this siRNAs had no effect on cell viability or growth. Flow cytometry analysis suggested that Bmi-1 inhibition did not affect the cell cycle. It is concluded that the suppression of Bmi-1 expression is not able to reduce proliferation of K562 cells, suggesting existence of some other parallel signaling pathways, which are fundamental for leukemic transformation and are independent of Bmi-1 over-expression. Bmi-1 over-expression may play a secondary role in chronic myeloid leukemia transformation.
Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Proteínas Represoras/genética , Proliferación Celular , Supervivencia Celular , Vectores Genéticos , Humanos , Células K562 , Complejo Represivo Polycomb 1 , ARN Interferente Pequeño/genética , TransfecciónRESUMEN
The purpose of this study was to investigate the expression of human Factor IX (hFIX) in retrovirus-transfected human umbilical cord tissue derived mesenchymal stem cells (hUCT-MSCs). The pLEGFP-N1-hFIX vector was generated by cloning a 3.0 kb Bgl II-BamH I fragment from the pIRES2-EGFP-hFIX plasmid containing the hFIX cDNA and part of intron 1 of hFIX in pLEGFP-N1 vector. The retroviral supernatants were produced from the Phoenix packaging cell line and then infected the hUCT-MSCs. After selection with G418 for 10 day, the expression of FIX was detected by ELISA and Western blot. The biological activity of FIX was determined by the clotting assay employing human Factor IX-deficient plasma. The results showed that compared with the activity of pooled human normal plasma (100%), transduced cells produced biologically active hFIX with 100-130% activity in two-day culture supernatant and expressed hFIX at levels of 2.68 +/- 0.36 microg/10(6) cells/24 hours after G418 selection for 10 days. The secretion of hFIX into culture supernatant was also confirmed by Western blot analysis. It is concluded that genetically modified hUCT-MSCs can express biologically active hFIX and thus serve as an efficient drug delivery vehicle carrying hFIX used as a way of somatic gene therapy for hemophilia B.
Asunto(s)
Factor IX/genética , Vectores Genéticos , Células Madre Mesenquimatosas , Retroviridae/genética , Línea Celular , Expresión Génica , Terapia Genética , Humanos , TransfecciónRESUMEN
OBJECTIVE: To determine whether mobilized peripheral blood mononuclear cells (M-PBMNCs) obtained from patients with diabetes was impaired in therapeutic neovascularization in limb ischemia, and to explore the pathological mechanisms of the impairment. METHODS: Endothelial progenitor cells (EPC) were cultured in EGM-2MV, and then characterized by uptake of 1, 1-dioctadecyl-3, 3, 3, 3-tetramethylindocarbocyanine-labeled acetylated low density lipoprotein (Dil-AcLDL) and binding of ulex europaeus agglutinin (UEA). The number of EPC was compared between M-PBMNCs obtained from diabetic patients and those from normal subjects. M-PBMNCs obtained from diabetic patients, M-PBMNCs obtained from normal controls, or PBS were injected into the ischemic limbs of streptozotocin-induced diabetic nude mice. The limb blood perfusion was detected by laser Doppler blood perfusion imaging between these three groups in the following 1, 3, 7, 14, 21, and 28 days. Ambulatory score and ischemia damage were evaluated in the following 4 weeks. Capillary/fiber ratio was detected by CD31 or BS-1 lectin, and arteriole density was detected by alpha-smooth muscle actin (alpha-SMactin). RESULTS: The number of EPC from diabetic patients were positively correlated with the blood perfusion (R = 0.486, P < 0.05) and capillary density (R = 0.491, P < 0.05), and the EPC number in diabetic patient were negatively correlation with their disease courses (R = - 0.587, P < 0.05). Transplantation of diabetic M-PBMNCs augmented the blood perfusion of ischemia hindlimbs, increased the capillary and arteriole densities, and promoted the collateral vessel formation. However, all the improvements were less significant in the diabetic patients than in the non-diabetic patients (P < 0.05). CONCLUSION: Diabetes decreased the capability of M-PBMNCs to augment neovascularization in ischemia.