Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Plant Sci ; 13: 1007150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330250

RESUMEN

The chlorophyll fluorescence parameter Fv/Fm is significant in abiotic plant stress. Current acquisition methods must deal with the dark adaptation of plants, which cannot achieve rapid, real-time, and high-throughput measurements. However, increased inputs on different genotypes based on hyperspectral model recognition verified its capabilities of handling large and variable samples. Fv/Fm is a drought tolerance index reflecting the best drought tolerant cotton genotype. Therefore, Fv/Fm hyperspectral prediction of different cotton varieties, and drought tolerance evaluation, are worth exploring. In this study, 80 cotton varieties were studied. The hyperspectral cotton data were obtained during the flowering, boll setting, and boll opening stages under normal and drought stress conditions. Next, One-dimensional convolutional neural networks (1D-CNN), Categorical Boosting (CatBoost), Light Gradient Boosting Machines (LightBGM), eXtreme Gradient Boosting (XGBoost), Decision Trees (DT), Random Forests (RF), Gradient elevation decision trees (GBDT), Adaptive Boosting (AdaBoost), Extra Trees (ET), and K-Nearest Neighbors (KNN) were modeled with F v /F m. The Savitzky-Golay + 1D-CNN model had the best robustness and accuracy (RMSE = 0.016, MAE = 0.009, MAPE = 0.011). In addition, the F v /F m prediction drought tolerance coefficient and the manually measured drought tolerance coefficient were similar. Therefore, cotton varieties with different drought tolerance degrees can be monitored using hyperspectral full band technology to establish a 1D-CNN model. This technique is non-destructive, fast and accurate in assessing the drought status of cotton, which promotes smart-scale agriculture.

2.
Front Plant Sci ; 13: 1004904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247541

RESUMEN

Quantitative analysis of root development is becoming a preferred option in assessing the function of hidden underground roots, especially in studying resistance to abiotic stresses. It can be enhanced by acquiring non-destructive phenotypic information on roots, such as rhizotrons. However, it is challenging to develop high-throughput phenotyping equipment for acquiring and analyzing in situ root images of root development. In this study, the RhizoPot platform, a high-throughput in situ root phenotyping platform integrating plant culture, automatic in situ root image acquisition, and image segmentation, was proposed for quantitative analysis of root development. Plants (1-5) were grown in each RhizoPot, and the growth time depended on the type of plant and the experimental requirements. For example, the growth time of cotton was about 110 days. The imaging control software (RhizoAuto) could automatically and non-destructively image the roots of RhizoPot-cultured plants based on the set time and resolution (50-4800 dpi) and obtain high-resolution (>1200 dpi) images in batches. The improved DeepLabv3+ tool was used for batch processing of root images. The roots were automatically segmented and extracted from the background for analysis of information on radical features using conventional root software (WinRhizo and RhizoVision Explorer). Root morphology, root growth rate, and lifespan analysis were conducted using in situ root images and segmented images. The platform illustrated the dynamic response characteristics of root phenotypes in cotton. In conclusion, the RhizoPot platform has the characteristics of low cost, high-efficiency, and high-throughput, and thus it can effectively monitor the development of plant roots and realize the quantitative analysis of root phenotypes in situ.

3.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012720

RESUMEN

Root systems are the key organs through which plants absorb water and nutrients and perceive the soil environment and thus are easily damaged by salt stress. Melatonin can alleviate stress-induced damage to roots. The present study investigated the effects of exogenous melatonin on the root physiology, transcriptome and metabolome of cotton seedlings under salt stress. Salt stress was observed to damage the cell structure and disorder the physiological system of cotton seedling roots. After subjecting melatonin-soaked seeds to salt stress, the activities of SOD, CAT and POD in cotton seedling roots increased by 10-25%, 50-60% and 50-60%, respectively. The accumulation of H2O2 and MDA were significantly decreased by 30-60% and 30-50%, respectively. The contents of soluble sugar, soluble protein and K+ increased by 15-30%, 15-30% and 20-50%, respectively, while the Na+ content was significantly reduced. Melatonin also increased auxin (by 20-40%), brassinosteroids (by 5-40%) and gibberellin (by 5-35%) and promoted melatonin content and root activity. Exogenous melatonin maintained the integrity of root cells and increased the number of organelles. Transcriptomic and metabolomic results showed that exogenous melatonin could mitigate the salt-stress-induced inhibition of plant root development by regulating the reactive oxygen species scavenging system; ABC transporter synthesis; plant hormone signal transduction, endogenous melatonin gene expression; and the expression of the transcription factors MYB, TGA and WRKY33. These results provide a new direction and empirical basis for improving crop salt tolerance with melatonin.


Asunto(s)
Melatonina , Plantones , Gossypium/genética , Peróxido de Hidrógeno/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Metaboloma , Estrés Salino , Plantones/metabolismo , Estrés Fisiológico/genética , Transcriptoma
4.
Front Plant Sci ; 13: 932912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845711

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine, MT) can mitigate abotic stress, including drought stress on a number of crops. However, it is unclear whether and how seed priming with melatonin alleviates the effects of drought stress on seed germination and seedling growth of triticale (Triticale hexaploide L.). In this study, we investigated the effects of seed priming with MT on seed germination, protective enzyme activity, superoxide anion, and hydrogen peroxide in triticale under PEG-6000 induced drought stress. Seed priming with 20 µM MT alleviated the adverse effects of PEG-6000 induced drought stress on seed germination and seedling growth. Triticale seeds primed with 20 µM MT exhibited improved germination potential, germination rate, germ and radicle length. Specifically, MT priming increased the germination rate by 57.67% compared with unprimed seeds. Seed priming with melatonin also alleviated the adverse effects of PEG-6000 induced drought stress on triticale seedlings. MT pretreatment with 20 µM significantly increased the net photosynthetic rate, transpiration rate, stomatal conductance, plant height, leaf area, and relative chlorophyll concentration, enhanced the activities of superoxide dismutase and peroxidase, and decreased reactive oxygen species (ROS) and malonaldehyde content in the seeds (germ and radicle) and seedlings (leaf and root). Collectively, these results suggest that seed priming with melatonin promotes ROS scavenging capacity and enhances energy supply and antioxidant enzyme activities to alleviate the adverse effects of drought stress in triticale.

5.
BMC Plant Biol ; 21(1): 331, 2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246235

RESUMEN

BACKGROUND: As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0-500 µM MT treatments with salt stress induced by treatment with 150 mM NaCl. RESULTS: Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). CONCLUSIONS: Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


Asunto(s)
Gossypium/metabolismo , Melatonina/metabolismo , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/efectos de los fármacos , Tolerancia a la Sal/efectos de los fármacos , Productos Agrícolas/metabolismo
6.
Plant Physiol Biochem ; 164: 92-100, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33975148

RESUMEN

Apical hook formation is essential for the emergence and stand establishment of cotton plants. Searching for agronomic measures to regulate apical hook formation and clarifying its mechanism are important for full stand establishment in cotton. In this study, cotton seeds were sown at varying seeding rates or depths in sand to determine if and how apical hook formation was regulated by seeding rates or depths. The results showed that deep seeding or low seeding rates increased mechanical pressure and then increased ethylene content by increasing GhACO1 and GhACS2 expression to improve apical hook formation. Silencing of the GhACO1 and GhACS2 genes or exogenous application of 1-methylcyclopropene (1-MCP) decreased the ethylene content and inhibited apical hook formation in the cotton seedlings. Deep seeding, a low seeding rate, or 1-amino cyclopropane-1-carboxylic acid (ACC) treatment increased the expression of GhHLS1 and GhPIF3 genes, but their expression was decreased in theVIGS-ACO1 and VIGS-ACS2 seedlings. Silencing of the GhHLS1 and GhPIF3 genes inhibited apical hook formation, although the expression of GhACO1 and GhACS2 was unchanged. GhPIF3 may act upstream of GhHLS1, as the expression of GhPIF3 in the VIGS-HLS1 seedlings was unchanged, while the expression of GhHLS1 in the VIGS-PIF3 seedlings decreased. These results suggested that raised mechanical pressure could increase ethylene content by inducing GhACO1 and GhACS2 gene expression, which promoted apical hook formation by increasing the expression of GhHLS1. Therefore, adjusting the mechanical pressure through changing the seeding depth or seeding rate is an important means to regulate apical hook formation and emergence.


Asunto(s)
Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Plantones
7.
PeerJ ; 8: e10486, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365206

RESUMEN

Melatonin is a small-molecule indole hormone that plays an important role in participating in biotic and abiotic stress resistance. Melatonin has been confirmed to promote the normal development of plants under adversity stress by mediating physiological regulation mechanisms. However, the mechanisms by which exogenous melatonin mediates salt tolerance via regulation of antioxidant activity and osmosis in cotton seedlings remain largely unknown. In this study, the regulatory effects of melatonin on reactive oxygen species (ROS), the antioxidant system, and osmotic modulators of cotton seedlings were determined under 0-500 µM melatonin treatments with salt stress induced by 150 mM NaCl treatment. Cotton seedlings under salt stress exhibited an inhibition of growth, excessive hydrogen peroxide (H2O2), superoxide anion (O2 -), and malondialdehyde (MDA) accumulations in leaves, increased activity levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and elevated ascorbic acid (AsA) and glutathione (GSH) content in leaves. However, the content of osmotic regulators (i.e., soluble sugars and proteins) in leaves was reduced under salt stress. This indicates high levels of ROS were produced, and the cell membrane was damaged. Additionally, osmotic regulatory substance content was reduced, resulting in osmotic stress, which seriously affected cotton seedling growth under salt stress. However, exogenous melatonin at different concentrations reduced the contents of H2O2, O2 -, and MDA in cotton leaves, increased the activity of antioxidant enzymes and the content of reductive substances (i.e., AsA and GSH), and promoted the accumulation of osmotic regulatory substances in leaves under salt stress. These results suggest that melatonin can inhibit ROS production in cotton seedlings, improve the activity of the antioxidant enzyme system, raise the content of osmotic regulation substances, reduce the level of membrane lipid peroxidation, and protect the integrity of the lipid membrane under salt stress, which reduces damage caused by salt stress to seedlings and effectively enhances inhibition of salt stress on cotton seedling growth. These results indicate that 200 µM melatonin treatment has the best effect on the growth and salt tolerance of cotton seedlings.

8.
BMC Plant Biol ; 20(1): 328, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652934

RESUMEN

BACKGROUND: Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide. Fine roots are the central part of the root system that contributes to plant water and nutrient uptake. However, the mechanisms underlying the response of cotton fine roots to soil drought remains unclear. To elucidate the proteomic changes in fine roots of cotton plants under drought stress, 70-75% and 40-45% soil relative water content treatments were imposed on control (CK) and drought stress (DS) groups, respectively. Then, tandem mass tags (TMT) technology was used to determine the proteome profiles of fine root tissue samples. RESULTS: Drought significantly decreased the value of average root diameter of cotton seedlings, whereas the total root length and the activities of antioxidases were increased. To study the molecular mechanisms underlying drought response further, the proteome differences between tissues under CK and DS treatments were compared pairwise at 0, 30, and 45 DAD (days after drought stress). In total, 118 differentially expressed proteins (DEPs) were up-regulated and 105 were down-regulated in the 'DS30 versus CK30' comparison; 662 DEPs were up-regulated, and 611 were down-regulated in the 'DS45 versus CK45' comparison. The functions of these DEPs were classified according to their pathways. Under early stage drought (30 DAD), some DEPs involved in the 'Cutin, suberin, and wax synthesis' pathway were up-regulated, while the down-regulated DEPs were mainly enriched within the 'Monoterpenoid biosynthesis' pathway. Forty-five days of soil drought had a greater impact on DEPs involved in metabolism. Many proteins involving 'Carbohydrate metabolism,' 'Energy metabolism,' 'Fatty acid metabolism,' 'Amino acid metabolism,' and 'Secondary metabolite biosynthesis' were identified as DEPs. Additionally, proteins related to ion transport, stress/defense, and phytohormones were also shown to play roles in determining the fine root growth of cotton plants under drought stress. CONCLUSIONS: Our study identified potential biological pathways and drought-responsive proteins related to stress/defense responses and plant hormone metabolism under drought stress. Collectively, our results provide new insights for further improving drought tolerance in cotton and other crops.


Asunto(s)
Gossypium/fisiología , Proteínas de Plantas/metabolismo , Proteoma , Sequías , Gossypium/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Proteómica , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Espectrometría de Masas en Tándem
9.
Sci Rep ; 10(1): 4328, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152443

RESUMEN

In biology, structure is the basis of function. For plants, changes in their physiological and ecological functions are usually caused by structural changes. To understand how shading conditions change the plant structures, thereby providing structural insights into the improved yield and quality, oilseed tree peony were shaded with different densities of polyethylene nets from 28 days after pollination (DAP) until harvesting. The thickness of the leaf (LT), vein (VT), upper epidermis (UET), lower epidermis (LET), palisade tissue (PT), sponge tissue (ST), as well as the accumulation and distribution of starch, protein, and fat, were observed at 14-day intervals. The results showed that shading had a significant effect on the anatomical structure of the leaves. In the rapid growth period (before 70 DAP), the LT, ET, and VT under shading were significantly lower than under non-shading. During this period, the accumulation of starch and protein under shading was lower than that under non-shading. At the maturation period (99-112 DAP), the LT and PT under shading were higher than under non-shading, indicating that light shading delayed leaf senescence and increased photosynthetic capacity. Shading delayed the degradation of the integument cells and prolonged seed development and nutrient accumulation.


Asunto(s)
Paeonia/citología , Paeonia/efectos de la radiación , Hojas de la Planta/citología , Fenómenos Fisiológicos de las Plantas , Semillas/citología , Luz Solar , Biomarcadores , Células Epidérmicas/citología , Células Epidérmicas/ultraestructura , Histocitoquímica , Paeonia/metabolismo , Fenotipo , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Semillas/anatomía & histología , Semillas/metabolismo , Estrés Fisiológico
10.
Plant Physiol ; 180(3): 1660-1676, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31079035

RESUMEN

Partial root-zone irrigation (PRI), a water-saving technique, improves water uptake in hydrated roots by inducing specific responses that are thought to be regulated by signals originating from leaves; however, this signaling is poorly understood. Using a split-root system and polyethylene glycol 6000 to simulate PRI in cotton (Gossypium hirsutum), we showed that increased root hydraulic conductance (L) and water uptake in the hydrated roots may be due to the elevated expression of cotton plasma membrane intrinsic protein (PIP) genes. Jasmonate (jasmonic acid [JA] and jasmonic acid-isoleucine conjugate [JA-Ile]) content and the expression of three JA biosynthesis genes increased in the leaves of the PRI plants compared with those of the polyethylene glycol-free control. JA/JA-Ile content also increased in the hydrated roots, although the expression of the three JA genes was unaltered, compared with the control. The JA/JA-Ile contents in leaves increased after the foliar application of exogenous JA and was followed by an increase in both JA/JA-Ile content and L in the hydrated roots, whereas the silencing of the three JA genes had the opposite effect in the leaves. Ring-barking the hydrated hypocotyls increased the JA/JA-Ile content in the leaves but decreased the JA/JA-Ile content and L in the hydrated roots. These results suggested that the increased JA/JA-Ile in the hydrated roots was mostly transported from the leaves through the phloem, thus increasing L by increasing the expression of GhPIP in the hydrated roots under PRI. We believe that leaf-derived JA/JA-Ile, as a long-distance signal, positively mediates water uptake from the hydrated roots of cotton under PRI.


Asunto(s)
Riego Agrícola/métodos , Ciclopentanos/metabolismo , Gossypium/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Agua/metabolismo , Transporte Biológico , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Isoleucina/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética
11.
PLoS One ; 12(9): e0185075, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28953908

RESUMEN

Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gossypium/genética , Gossypium/fisiología , Hojas de la Planta/genética , Estrés Fisiológico/efectos de los fármacos , Agua/farmacología , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Carbono/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Gossypium/efectos de los fármacos , Gossypium/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Análisis de Secuencia de ARN , Solubilidad , Estrés Fisiológico/genética
12.
Sci Rep ; 7(1): 2879, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28588258

RESUMEN

Non-uniform salinity alleviates salt damage through sets of physiological adjustments in Na+ transport in leaf and water and nutrient uptake in the non-saline root side. However, little is known of how non-uniform salinity induces these adjustments. In this study, RNA sequencing (RNA-Seq) analysis shown that the expression of sodium transport and photosynthesis related genes in the non-uniform treatment were higher than that in the uniform treatment, which may be the reason for the increased photosynthetic (Pn) rate and decreased Na+ content in leaves of the non-uniform salinity treatment. Most of the water and nutrient transport related genes were up-regulated in the non-saline root side but down-regulated in roots of the high-saline side, which might be the key reason for the increased water and nutrient uptake in the non-saline root side. Furthermore, the expression pattern of most differentially expressed transcription factor and hormone related genes in the non-saline root side was similar to that in the high-saline side. The alleviated salt damage by non-uniform salinity was probably attributed to the increased expression of salt tolerance related genes in the leaf and that of water and nutrient uptake genes in the non-saline root side.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad , Sodio/metabolismo , Agua/metabolismo , Transporte Biológico , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Ontología de Genes
13.
Bio Protoc ; 7(4): e2136, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34458457

RESUMEN

A new split-root system was used to simulate non-uniform salt, drought or nutrient deficiency stress in the root zone, in which the root system was divided into two or more equal portions. Here, we established a split-root system by grafting of cotton seedlings. In contrast to the conventional split-root, the main roots of the new system remained intact, which provided a better system for studying cotton response to unequal treatment in the root zone. The new system was suitable for plant growth in nutrient solution and the two root systems can fully be immerged in the nutrient solution.

14.
Ying Yong Sheng Tai Xue Bao ; 27(2): 643-51, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-27396141

RESUMEN

Senescence is a natural termination process at the plant or organ level of cotton, leading to the inevitable end of the growth and development process. Maturity performance is termed as senescence performance and results of a cotton plant during boll opening, including normal maturity, premature senescence and late-maturity in cotton. Senescence and maturity performance are influenced by genotype and environment interactions. This paper summarized and reviewed the research progress in eco-physiology and molecular biology of cotton leaf senescence. Strategies were proposed to regulate cotton growth and aging through breeding of stably-developed varieties, rational application of plant growth regulators and agronomic cultivation measures, to realize normal maturity and improve yield and quality of cotton.


Asunto(s)
Gossypium/fisiología , Hojas de la Planta/fisiología , Agricultura/métodos , Fitomejoramiento
15.
J Exp Bot ; 67(8): 2247-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26862153

RESUMEN

Non-uniform root salinity increases the Na(+)efflux, water use, and growth of the root in non-saline side, which may be regulated by some form of signaling induced by the high-salinity side. However, the signaling and its specific function have remained unknown. Using a split-root system to simulate a non-uniform root zone salinity in Gossypium hirsutum L., we showed that the up-regulated expression of sodium efflux-related genes (SOS1, SOS2, PMA1, and PMA2) and water uptake-related genes (PIP1 and PIP2) was possibly involved in the elevated Na(+) efflux and water use in the the roots in the non-saline side. The increased level of indole acetic acid (IAA) in the non-saline side was the likely cause of the increased root growth. Also, the abscisic acid (ABA) and H2O2 contents in roots in the non-saline side increased, possibly due to the increased expression of their key biosynthesis genes, NCED and RBOHC, and the decreased expression of ABA catabolic CYP707A genes. Exogenous ABA added to the non-saline side induced H2O2 generation by up-regulating the RBOHC gene, but this was decreased by exogenous fluridone. Exogenous H2O2 added to the non-saline side reduced the ABA content by down-regulating NCED genes, which can be induced by diphenylene iodonium (DPI) treatment in the non-saline side, suggesting a feedback mechanism between ABA and H2O2.Both exogenous ABA and H2O2 enhanced the expression of SOS1, PIP1;7 ,PIP2;2, and PIP2;10 genes, but these were down-regulated by fluridone and DPI, suggesting that H2O2 and ABA are important signals for increasing root Na(+) efflux and water uptake in the roots in the non-saline side.


Asunto(s)
Ácido Abscísico/metabolismo , Gossypium/metabolismo , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas/metabolismo , Salinidad , Transducción de Señal , Sodio/metabolismo , Agua/metabolismo , Transporte Biológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Modelos Biológicos , Compuestos Onio/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos
16.
PLoS One ; 10(6): e0129541, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26061875

RESUMEN

Many secondary metabolites have insecticidal efficacy against pests and may be affected by abiotic stress. However, little is known of how plants may respond to such stress as pertains the growth and development of pests. The objective of this study was to determine if and how salt stress on cotton plants affects the population dynamics of aphids. The NaCl treatment (50 mM, 100 mM, 150 mM and 200 mM) increased contents of gossypol in cotton by 26.8-51.4%, flavonoids by 22.5-37.6% and tannic by 15.1-24.3% at 7-28 d after salt stress. Compared with non-stressed plants, the population of aphids on 150 and 200 mM NaCl stressed plants was reduced by 46.4 and 65.4% at 7d and by 97.3 and 100% at 14 days after infestation. Reductions in aphid population were possibly attributed to the elevated secondary metabolism under salt stress. A total of 796 clones for aphids transcriptome, 412 clones in the positive- library (TEST) and 384 clones in the reverse-library (Ck), were obtained from subtracted cDNA libraries and sequenced. Gene ontology (GO) functional classification and KEGG pathway analysis showed more genes related to fatty acid and lipid biosynthesis, and fewer genes related to carbohydrate metabolism, amino acid metabolism, energy metabolism and cell motility pathways in TEST than in Ck library, which might be the reason of aphids population reduction. A comparative analysis with qRT-PCR indicated high expression of transcripts CYP6A14, CYP6A13, CYP303A1, NADH dehydrogenase and fatty acid synthase in the TEST group. However, CYP307A1 and two ecdysone-induced protein genes were down regulated. The results indicate that genes of aphids related to growth and development can express at a higher level in reaction to the enhanced secondary metabolism in cotton under salinity stress. The expression of CYP307A1 was positively correlated with the population dynamics of aphids since it was involved in ecdysone synthesis.


Asunto(s)
Áfidos/efectos de los fármacos , Gossypium/química , Proteínas de Plantas/genética , Metabolismo Secundario/efectos de los fármacos , Cloruro de Sodio/farmacología , Animales , Áfidos/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gosipol/metabolismo , Gosipol/farmacología , Proteínas de Plantas/metabolismo , Salinidad , Taninos/metabolismo , Taninos/farmacología , Transcriptoma/efectos de los fármacos
17.
PLoS One ; 8(7): e69847, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922821

RESUMEN

Leaf senescence varies greatly among genotypes of cotton (Gossypium hirsutium L), possibly due to the different expression of senescence-related genes. To determine genes involved in leaf senescence, we performed genome-wide transcriptional profiling of the main-stem leaves of an early- (K1) and a late-senescence (K2) cotton line at 110 day after planting (DAP) using the Solexa technology. The profiling analysis indicated that 1132 genes were up-regulated and 455 genes down-regulated in K1 compared with K2 at 110 DAP. The Solexa data were highly consistent with, and thus were validated by those from real-time quantitative PCR (RT-PCR). Most of the genes related to photosynthesis, anabolism of carbohydrates and other biomolecules were down-regulated, but those for catabolism of proteins, nucleic acids, lipids and nutrient recycling were mostly up-regulated in K1 compared with K2. Fifty-one differently expressed hormone-related genes were identified, of which 5 ethylene, 3 brassinosteroid (BR), 5 JA, 18 auxin, 8 GA and 1 ABA related genes were up-regulated in K1 compared with K2, indicating that these hormone-related genes might play crucial roles in early senescence of K1 leaves. Many differently expressed transcription factor (TF) genes were identified and 11 NAC and 8 WRKY TF genes were up-regulated in K1 compared with K2, suggesting that TF genes, especially NAC and WRKY genes were involved in early senescence of K1 leaves. Genotypic variation in leaf senescence was attributed to differently expressed genes, particularly hormone-related and TF genes.


Asunto(s)
Gossypium/genética , Gossypium/metabolismo , Hojas de la Planta/genética , Factores de Transcripción/genética , Transcriptoma/genética , Brasinoesteroides/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Ying Yong Sheng Tai Xue Bao ; 24(12): 3453-8, 2013 Dec.
Artículo en Chino | MEDLINE | ID: mdl-24697064

RESUMEN

Cotton (Gossypium hirsutum) was raised at different salinity levels (0, 0.15% and 0.30%) by irrigating with fresh- or sea-water. The effects of fertilization (N, NK, NP and NPK) on plant growth, nitrogen (N) uptake and N use efficiency were studied. The results showed that salinity and fertilization both affected the biomass, agronomic N use efficiency, N bioavailability and nitrogen accumulation of plants, and significant interaction was observed between the two factors. Fertilization could improve N use efficiency and nitrogen accumulation of plants under salinity stress, and significantly promoted the cotton yield. Among the fertilization treatments, N combined with P and K had the best effect. The benefit of fertilization was better under low salinity (0.15%) than under moderate salinity (0.3%).


Asunto(s)
Fertilizantes , Gossypium/crecimiento & desarrollo , Nitrógeno/química , Salinidad , Riego Agrícola , Biomasa , Suelo/química , Estrés Fisiológico
19.
Ying Yong Sheng Tai Xue Bao ; 23(2): 566-72, 2012 Feb.
Artículo en Chino | MEDLINE | ID: mdl-22586988

RESUMEN

Stand establishment is the most difficult step for cotton planting on coastal saline-alkali soil. To establish and improve the techniques for stand establishment is the key in the production of high-yielding cotton on saline-alkali soil. Based on the previous studies and our own research progress in this field, this paper reviewed the effects and the underlying mechanisms of making unequal salt distribution in root zone, increasing soil moisture and temperature, establishing under-mulching greenhouse, and introducing seed coating agent in promoting stand establishment of cotton on saline-alkali soil. It was suggested that under the conditions of the average salt content in topsoil being not able to reduce, improving at least partial root zone environment through the induction of unequal salt distribution in the root zone and increasing soil moisture and temperature could significantly reduce salt injury and improve stand establishment. Flat seeding under plastic mulching on low-salinity soil, furrow seeding with mulching on moderate- or high-salinity soil, early mulching before sowing on rain-fed saline soil, and late sowing of short-season cotton in heat-limited area were the efficient techniques for improving the stand establishment of cotton on coastal saline-alkali soil. This review could provide full guarantee for the cotton stand establishment on coastal saline-alkali soil.


Asunto(s)
Agricultura/métodos , Ecosistema , Gossypium/crecimiento & desarrollo , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Suelo/análisis , Álcalis/análisis , Gossypium/fisiología , Océanos y Mares , Plantones/crecimiento & desarrollo , Plantones/fisiología
20.
J Exp Bot ; 63(5): 2105-16, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22200663

RESUMEN

A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na(+) concentrations in leaves. The [Na(+)] in the '0' side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the '0' side phloem was girdled, suggesting that the increased [Na(+)] in the '0' side roots was possibly due to transportation of foliar Na(+) to roots through phloem. Plants under non-uniform salinity extruded more Na(+) from the root than those under uniform salinity. Root Na(+) efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na(+) efflux and H(+) influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na(+) extrusion was probably due to active Na(+)/H(+) antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na(+) concentration, transport of excessive foliar Na(+) to the low salinity side, and enhanced Na(+) efflux from the low salinity root.


Asunto(s)
Gossypium/fisiología , Cloruro de Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Agua/fisiología , Transporte Biológico/fisiología , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Floema/crecimiento & desarrollo , Floema/metabolismo , Floema/fisiología , Fotosíntesis/fisiología , Corteza de la Planta/crecimiento & desarrollo , Corteza de la Planta/metabolismo , Corteza de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , Potasio/análisis , Potasio/metabolismo , Salinidad , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/fisiología , Sodio/análisis , Sodio/metabolismo , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA