Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Antioxidants (Basel) ; 13(9)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39334777

RESUMEN

This study investigates the effects of the essential oil from Amomum villosum (EOA) on liver-protective effects in Nile tilapia (Oreochromis niloticus), utilizing a multidisciplinary approach that integrates physiological assessments and transcriptomic and metabolomic analyses. Fish were fed diets containing 2 g/kg of EOA over a 56-day trial, with a no-EOA diet serving as the control. The results demonstrate that EOA supplementation improves liver histology, enhances antioxidant capacities, and reduces inflammation in tilapia. The transcriptomic analysis revealed significant alterations in gene expression profiles related to RNA splicing, metabolism, and disease pathways. The identification of differential genes and disease databases identified key target genes associated with the primary component of EOA for its anti-hepatobiliary disease effects. Furthermore, a molecular docking analysis of EOA major components with core differentially expressed genes in the hepatobiliary syndrome indicated that α-pinene is a potential Hsp90 inhibitor, which may prevent inflammation. A metabolomic analysis further demonstrated that EOA supplementation leads to notable changes in liver phospholipids, fatty acids, and carbohydrate metabolism. These findings underscore the potential of EOA as a natural additive for improving liver health in tilapia, offering valuable insights to the aquaculture industry for enhancing fish health and welfare in intensive farming systems.

2.
Fish Physiol Biochem ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042183

RESUMEN

Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for "neuroactive ligand-receptor interaction." The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.

3.
Nat Commun ; 14(1): 7990, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042908

RESUMEN

Solute transport during rapid and repeated thermal cycle in additive manufacturing (AM) leading to non-equilibrium, non-uniform microstructure remains to be studied. Here, a fully-coupled fluid dynamics and microstructure modelling is developed to rationalise the dynamic solute transport process and elemental segregation in AM, and to gain better understanding of non-equilibrium nature of intercellular solute segregation and cellular structures at sub-grain scale during the melting-solidification of the laser powder bed fusion process. It reveals the solute transport induced by melt convection dilutes the partitioned solute at the solidification front and promotes solute trapping, and elucidates the mechanisms of the subsequent microstructural morphology transitions to ultra-fine cells and then to coarse cells. These suggest solute trapping effect could be made used for reducing crack susceptibility by accelerating the solidification process. The rapid solidification characteristics exhibit promising potential of additive manufacturing for hard-to-print superalloys and aid in alloy design for better printability.

4.
Environ Technol ; : 1-10, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37183433

RESUMEN

ABSTRACTImmobilized microorganisms technology has been explored as a promising wastewater treatment method. To further increase the activity of the immobilized microorganisms, a porous membrane which was composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) was designed for microorganism encapsulation. The plane membrane and the spherical membrane were prepared respectively. The morphology, mechanical properties, nitrate permeability, and biodegradability of the plane membranes were investigated to determine an optimized formulation. And then, denitrifying bacteria was encapsulated by the spherical membrane and its denitrification performance in synthetic wastewater was explored. The mean pore size of the PLA/PEG plane membranes ranged from 2.09 ± 0.63 µm to 3.15 ± 1.32 µm. PEG stimulated interconnected pore structure of the PLA/PEG plane membrane. Compare with neat PLA membrane, the tensile strength of the PLA/50%PEG plane membrane decreased by about 53.2% and elongation at break increased by about 103.5%. Nitrate permeability attained a maximum of 188.95 ± 4.59 mg·L-1·m-2·h-1 for PLA/50%PEG plane membrane. The denitrifying active sludge enclosed with the spherical membrane showed good denitrification performance in a short start-up time. The nitrate removal rate reached 51.14% on the 4th day and 82.53% on the 17th day. This porous PLA/50%PEG membrane was good for the diffusion of substrates and nutrients, which enabled the encapsulated microorganism recovered activity in a short time. The spraying method made the microorganism encapsulation could be designed according to the different microorganisms and different user environments, which expanded the application scope of microorganism encapsulation technology.

5.
Materials (Basel) ; 16(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37109986

RESUMEN

High heat input welding can improve welding efficiency, but the impact toughness of the heat-affected zone (HAZ) deteriorates significantly. Thermal evolution in HAZ during welding is the key factor affecting welded joints' microstructures and mechanical properties. In this study, the Leblond-Devaux equation for predicting phase evolution during the welding of marine steels was parameterized. In experiments, E36 and E36Nb samples were cooled down at different rates from 0.5 to 75 °C/s; the obtained thermal and phase evolution data were used to construct continuous cooling transformation diagrams, which were used to derive the temperature-dependent parameters in the Leblond-Devaux equation. The equation was then used to predict phase evolution during the welding of E36 and E36Nb; the quantitative experimental phase fractions of the coarse grain zone were compared with simulated results to verify the prediction results, which are in good agreement. When heat input is 100 kJ/cm, phases in the HAZ of E36Nb are primarily granular bainite, whereas for E36, the phases are mainly bainite with acicular ferrite. When heat input increases to 250 kJ/cm, ferrite and pearlite form in both steels. The predictions agree with experimental observations.

6.
Materials (Basel) ; 16(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36676587

RESUMEN

The flow pattern is vital for the metallurgical performance of continuous casting tundishes. The purpose of this study was to design and optimize the flow characteristics inside a four-strand tundish. Numerical simulations and water model experiments were validated and utilized to investigate the flow behavior. The effect of different flow rates in the original tundish was evaluated; two modified retaining walls and a new ladle shroud were designed for optimization. The molten steel inside the original tundish tends to be more active as the flow rate increases from 3.8 L/min to 6.2 L/min, which results in a reduction in dead volume from 36.47% to 17.59% and better consistency between different outlets. The dead volume and outlet consistency inside the tundish are improved significantly when the modified walls are applied. The proper design of the diversion hole further enhances the plug volume from 6.39% to 13.44% of the tundish by forming an upstream circular flow in the casting zone. In addition, the new trumpet ladle shroud demonstrates an advantage in increasing the response time from 152.5 s to 167.5 s and alleviating the turbulence in the pouring zone, which is beneficial for clean steel production.

7.
Environ Pollut ; 318: 120950, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574809

RESUMEN

Nodularin (NOD) is a harmful cyanotoxin that affects shrimp farming. The hepatopancreas and intestine of shrimp are the main target organs of cyanotoxins. In this study, we exposed Litopenaeus vannamei to NOD at 0.1 and 1 µg/L for 72 h, respectively, and changes in histology, oxidative stress, gene transcription, metabolism, and intestinal microbiota were investigated. After NOD exposure, the hepatopancreas and intestine showed obvious histopathological damage and elevated oxidative stress response. Transcription patterns of immune genes related to detoxification, prophenoloxidase and coagulation system were altered in the hepatopancreas. Furthermore, metabolic patterns, especially amino acid metabolism and arachidonic acid related metabolites, were also disturbed. The integration of differential genes and metabolites revealed that the functions of "alanine, aspartic acid and glutamate metabolism" and "aminoacyl-tRNA biosynthesis" were highly affected. Alternatively, NOD exposure induced the variation of the diversity and composition of intestinal microbiota, especially the abundance of potentially beneficial bacteria (Demequina, Phyllobacterium and Pseudoalteromonas) and pathogenic bacteria (Photobacterium and Vibrio). Several intestinal bacteria were correlated with the changes of host the metabolic function and immune factors. These results revealed the toxic effects of NOD on shrimp, and identified some biomarkers.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Animales , Intestinos , Péptidos Cíclicos , Toxinas de Cianobacterias , Inmunidad Innata
8.
Fish Physiol Biochem ; 48(5): 1349-1363, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36114399

RESUMEN

Magnolia denudata is a well-known ornamental tree in China due to its beautiful blossoms, and it has been used as an analgesic to treat human headaches. This study investigated the anesthetic potential and physiological response of the essential oil of M. denudata flowers on spotted seabass Lateolabrax maculatus. Fish (mean ± SD, 164.16 ± 15.40 g) were individually exposed to different concentrations of M. denudata essential oil (MDO, 10, 20, 40, 60, 80, 100, and 120 mg/L) and eugenol (10, 20, 30, 40, 50, 60, and 70 mg/L) to investigate anesthetic efficacy. Based on the ideal time criterion for anesthetic induction (< 3 min) and recovery (< 10 min), the lowest effective concentration for spotted seabass was 100 mg/L for MDO and 60 mg/L for eugenol. The physiological and histopathological damage in the gill of L. maculatus after using MDO and eugenol was also evaluated at the minimum dose inducing deep anesthesia, and at 0, 6, and 24 h after recovery. The results showed that MDO and eugenol anesthesia alleviated the levels of cortisol and glucose and the lactic dehydrogenase activity induced by handling. Compared with eugenol, MDO also caused secondary stress to the body, but MDO caused minor physiological responses and histological changes in the gills. This study suggests that MDO is an effective anesthetic for spotted seabass.


Asunto(s)
Anestésicos , Lubina , Magnolia , Aceites Volátiles , Animales , Anestésicos/farmacología , Lubina/fisiología , Eugenol/farmacología , Branquias , Glucosa , Hidrocortisona , Aceites Volátiles/farmacología , Oxidorreductasas
9.
Materials (Basel) ; 15(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35329667

RESUMEN

In recent years, the shipbuilding industry has experienced a growing demand for tighter control and higher strength requirements in thick steel plate welding. Electro-gas welding (EGW) is a high heat input welding method, widely used to improve the welding efficiency of thick plates. Modelling the EGW process of thick steel plates has been challenging due to difficulties in accurately depicting the heat source path movement. An EGW experiment on 30 mm thickness E36 steel plates was conducted in this study. A semi-ellipsoid heat source model was implemented, and its movement was mathematically expressed using linear, sinusoidal, or oscillate-stop paths. The geometry of welding joints, process variables, and steel composition are taken from industrial scale experiments. The resulting thermal evolutions across all heat source-path approaches were verified against experimental observations. Practical industrial recommendations are provided and discussed in terms of the fusion quality for E36 steel plates with a heat input of 157 kJ/cm. It was found that the oscillate-stop heat path predicts thermal profile more accurately than the sinusoidal function and linear heat path for EGW welding of 30 mm thickness and above. The linear heat path approach is recommended for E36 steel plate thickness up to 20 mm, whereas maximum thickness up to 30 mm is appropriate for sinusoidal path, and maximum thickness up to 35 mm is appropriate for oscillate-stop path in EGW welding, assuming constant heat input.

10.
Mar Pollut Bull ; 167: 112220, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33836332

RESUMEN

Cadmium (Cd) and lead (Pb) are two hazardous pollutants that threaten shrimp farming. The intestine is an important organ for digestion and immunity. We separately exposed Pacific white shrimp Litopenaeus vannamei to 500 µg/L Cd or 500 µg/L Pb seawater for 7 days, and 45 shrimp from each group were used to evaluate the changes of intestinal histopathological, oxidative stress, and microbiota composition. After Cd and Pb exposure, shrimp intestine appeared significant mucosal damage and oxidative stress, and the microbiota variation were induced. Specifically, the abundance of the phyla Bacteroidetes and Actinobacteria were induced, that of Proteobacteria and Firmicutes were deduced. The abundances of putative beneficial bacteria (Lactobacillus, Weissella, Demequina, Formosa and Ruegeria) and potentially pathogenic bacteria (Vibrio and Photobacterium) were fluctuated. Furthermore, the nutrient metabolic function of intestinal microbes was significantly altered. We concluded that Cd and Pb exposure had negative effects on the intestinal health of shrimp.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Penaeidae , Animales , Cadmio/toxicidad , Intestinos , Plomo/toxicidad , Estrés Oxidativo , Taiwán
11.
Materials (Basel) ; 14(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669079

RESUMEN

CoCrFeMoNi high entropy alloys (HEAs) exhibit several promising characteristics for potential applications of high temperature coating. In this study, metastable intermetallic phases and their thermal stability of high-entropy alloy CoCrFeMo0.85Ni were investigated via thermal and microstructural analyses. Solidus and liquidus temperatures of CoCrFeMo0.85Ni were determined by differential thermal analysis as 1323 °C and 1331 °C, respectively. Phase transitions also occur at 800 °C and 1212 °C during heating. Microstructure of alloy exhibits a single-phase face-centred cubic (FCC) matrix embedded with the mixture of (Co, Cr, Fe)-rich tetragonal phase and Mo-rich rhombohedron-like phase. The morphologies of two intermetallics show matrix-based tetragonal phases bordered by Mo-rich rhombohedral precipitates around their perimeter. The experimental results presented in our paper provide key information on the microstructure and thermal stability of our alloy, which will assist in the development of similar thermal spray HEA coatings.

12.
Phys Chem Chem Phys ; 23(9): 5270-5282, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33629998

RESUMEN

Interfacial adsorption of solute atoms is a promising means to tune heterogeneous nucleation. In this study, a new method has been established to theoretically evaluate the effect of solute addition on the nucleation potency of heterogeneous nucleation interfaces. The evaluation consists of three steps: (1) analyzing the solute adsorption behavior; (2) determining the nucleation mode; and (3) evaluating the effect of solute adsorption on nucleation potency using the solute-adsorbed interface model. A combination of the ab initio and molecular dynamics methods together with the two-phase thermodynamic model was used to evaluate a prototype Al-Cu/(0001) sapphire interface. It is found that solute Cu atoms adsorb at the interface between the melt and (0001) sapphire interface. The adsorption is driven by the strengthening of the Cu-Al bonds as revealed by the Bader charge analysis which is demonstrated to reduce interfacial energy. Furthermore, it is revealed that the interfacial adoption of Cu results in the formation of an Al-Cu adsorption layer, which enhances the interfacial chemical affinity thus enlarging the nucleation driving force. Meanwhile, the lattice mismatch between the sapphire substrate and the primary Al (α-Al) nucleus is decreased by Cu addition, which lowers the barrier for nucleation. The above two effects together increase the nucleation potency of the studied interface, which is in good agreement with previous experiments. It is proposed that the effect of solute adsorption shall be considered in the search for effective substrates for tuning the nucleation.

13.
Entropy (Basel) ; 23(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430183

RESUMEN

In the search for applications for alloys developed under the philosophy of the High Entropy Alloy (HEA)-type materials, the focus may be placed on applications where current alloys also use multiple components, albeit at lower levels than those found in HEAs. One such area, where alloys with complex compositions are already found, is in filler metals used for joining. In soldering (<450 °C) and brazing (>450 °C), filler metal alloys are taken above their liquidus temperature and used to form a metallic bond between two components, which remain both unmelted and largely unchanged throughout the process. These joining methods are widely used in applications from electronics to aerospace and energy, and filler metals are highly diverse, to allow compatibility with a broad range of base materials (including the capability to join ceramics to metals) and a large range of processing temperatures. Here, we review recent developments in filler metals relevant to High Entropy materials, and argue that such alloys merit further exploration to help overcome a number of current challenges that need to be solved for filler metal-based joining methods.

14.
Sci Total Environ ; 754: 141867, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32898779

RESUMEN

Ammonia and thermal stress frequently have harmful effects on aquatic animals. The intestine is an important barrier allowing the body to defend against stress. In this study, we investigated the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei subjected to individual and combined ammonia and thermal stress. The results showed that obvious variation in the intestinal microbiota was observed after stress exposure, with increased levels of Firmicutes and decreased levels of Bacteroidetes and Planctomycetes. Several genera of putatively beneficial bacteria (Demequina, Weissella and Bacteroides) were abundant, while Formosa, Kriegella, Ruegeria, Rhodopirellula and Lutimonas were decreased; pathogenic bacteria of the genus Vibrio were increased under individual stress but decreased under combined stress. The intestinal transcriptome revealed several immune-related differentially expressed genes associated with the peritrophic membrane and antimicrobial processes in contrasting accessions. Haemolymph metabolomic analysis showed that stress exposure disturbed the metabolic processes of the shrimp, especially amino acid metabolism. This study provides insight into the underlying mechanisms associated with the intestinal microbiota, immunity and metabolism of L.vannamei in response to ammonia and thermal stress; ten stress-related metabolite markers were identified, including L-lactic acid, gulonic acid, docosahexaenoic acid, l-lysine, gamma-aminobutyric acid, methylmalonic acid, trans-cinnamate, N-acetylserotonin, adenine, and dihydrouracil.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Amoníaco/toxicidad , Animales , Penaeidae/genética , Taiwán , Transcriptoma
15.
Environ Technol ; 42(8): 1196-1203, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31462161

RESUMEN

A porous solid carbon source was prepared by semen litchi (SL), poly(vinyl alcohol) (PVA) and sodium alginate (SA) in aqueous. The effect of SL content on the structures and denitrification performance of the porous solid carbon source in simulated mariculture wastewater was investigated. The SL/PVA/SA beads showed a network structure with a wide range of macropores. Compared with blank beads, the SL/PVA/SA beads showed an increased rough surface and whole distribution on the surface with the increase of SL. In addition, SL/PVA/SA beads have more uniform pore size, but the porosity of SL/PVA/SA beads was decreased with the increase of SL. The porosity of the beads was 83.24%, 74.24%, 71.48% and 71.29% for blank beads and SL/PVA/SA beads contained 30%, 40% and 50% SL, when it was used as a solid carbon source for denitrification. Owing to their good porosity and biocompatibility, SL/PVA/SA beads had shorter acclimation time. Nitrate removal rate could reach up to 100% after two days of adaptation. After the exhaustion of carbon sources, nitrate removal rate less than 50% occurred at the 9th, 10th and 11th day for SL/PVA/SA beads that contained 30%, 40% and 50% SL, respectively. The beads that contained 50% SL exhibited longer lifetime during the denitrification reaction and denitrification rate could reach 243.5 ± 7.08 mg N (L d)-1. It could be used as an economical and effective carbon source for denitrification in mariculture wastewater.


Asunto(s)
Carbono , Aguas Residuales , Desnitrificación , Nitratos , Porosidad
16.
Sci Total Environ ; 761: 143311, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33229098

RESUMEN

Microplastics (MPs) are a hazardous pollutant of world concern that threaten aquatic organisms and ecosystems. In this study, we chose the worldwide-distributed shrimp Litopenaeus vannamei as a model and investigated the toxicological effects of five types of MPs on L. vannamei using several omics approaches. After 14 days of exposure to MPs, obvious intestinal microbiota variation was observed, such as increased abundances of Bacteroidetes and Proteobacteria and a decreased abundance of Firmicutes. Specifically, MPs induced several putative opportunistic pathogens and reduced lactic acid- and short-chain fatty acid-producing bacteria. Alternatively, MPs altered haemolymph proteome profiles, but the five types of MPs had different effects on the enriched pathways and the expression of immune-related proteins. Furthermore, MPs also caused haemolymph metabolite variation, especially in amino acid and alpha-linolenic acid metabolism, and 28 differential metabolites were altered in the five MP-treated groups. Changes in intestinal bacteria were correlated with the haemolymph proteins and metabolites of the shrimp. Overall, these results reveal the toxicological effects of MPs on the intestinal microbiota and the host's immunity and metabolism in shrimp.


Asunto(s)
Microbiota , Penaeidae , Animales , Microplásticos , Plásticos , Proteómica
17.
Sci Rep ; 10(1): 20751, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247196

RESUMEN

The cold neutron imaging and diffraction instrument IMAT, at the second target station of the pulsed neutron and muon source ISIS, is used to investigate bulk mosaicity within as-cast single crystal CMSX-4 and CMSX-10 Ni-base superalloys. Within this study, neutron transmission spectrum is recorded by each pixel within the microchannel plate image detector. The movement of the lowest transmission wavelength within a specified Bragg-dip for each pixel is tracked. The resultant Bragg-dip shifting has enabled crystallographic orientation mapping of bulk single crystal specimens with good spatial resolution. The total acquisition time required to collect sufficient statistics for each test is ~ 3 h. In this work, the influence of a change in bulk solidification conditions on the variation in single crystal mosaicity was investigated. Misorientation of the (001) crystallographic plane has been visualised and a new spiral twisting solidification phenomena observed. This proof of concept work establishes time-of-flight energy-resolved neutron imaging as a fundamental characterisation tool for understanding and visualising mosaicity within metallic single crystals and provides the foundation for post-mortem deduction of the shape of the solid/liquid isotherm.

19.
Fish Physiol Biochem ; 46(5): 1873-1882, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32617789

RESUMEN

Hypoxia stress may affect the fish intestine and thereby threaten the growth and survival of the fish. Teprenone is a clinically effective agent in protecting gastrointestinal mucosa. This study aims to assess the effect of teprenone in the intestine of Chinese sea bass Lateolabrax maculatus under intermittent hypoxic stress. L. maculatus juveniles were either raised under intermittent hypoxic condition or normal condition (NC). Part of the hypoxic-intervened fish were treated with teprenone at different concentrations (HTs), and the rest were regarded as hypoxic control (HC). Histological analysis was performed on the epithelial tissue of the fish intestine. High-throughput sequencing technology was used to analyze the diversity and composition of the microbial community in L. maculatus intestine. Reduced villi length and goblet cell, exfoliated enterocyte, and improper arrangement of villi were observed in HC compared with NC and HTs. Proteobacteria, Firmicutes, and Bacteroidetes represented the most abundant phyla in each sample. Significantly higher microbial diversity was detected in HC compared with NC (P < 0.05). At the phylum level, HC presented significantly decreased relative abundance of Proteobacteria, and significantly increased relative abundance of Bacteroidetes, Chloroflex, and Cyanobacteria compared with NC (P < 0.05). At the class level, HC showed significantly reduced relative abundance of Alphaproteobacteria and Bacilli, and significantly increased relative abundance of Clostridia, Gammaproteobacteria, and Bacteroides (P < 0.05). Teprenone protects the intestine from epithelial damages and maintains the microbial harmony in L. maculatus under intermittent hypoxic stress.


Asunto(s)
Antiulcerosos/farmacología , Lubina , Diterpenos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Intestinos/patología
20.
Sci Rep ; 10(1): 9423, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523016

RESUMEN

A kinetic model was developed using FactSage Macro Processing to simulate the re-oxidation of ultra-low carbon steel via different oxidising slags. The calculated results show good agreement with experimental laboratory thermal simulation data. Therefore, the model can be used to predict the change behaviour of slag-metal-inclusion in the re-oxidation reaction of liquid steel. It can provide prediction and guidance for an accurate secondary oxidation control process. During the slag re-oxidation process, when the oxygen in the steel is supersaturated and the slag is low in oxidation, it can easily form stick-like and dendritic shape inclusions of Al2O3 in steel. As the (FeO) content increases in slag, the oxygen transfer from slag to steel is evident, and the inclusion size increases, showing clusters and spherical shapes. In addition, supersaturated oxygen in steel easily forms unstable Al2O3-TiOx inclusions with [Ti]. As the components of liquid steel tend to be uniform, the Al2O3-TiOx inclusions will decompose and disappear, forming stable Al2O3 and TiO2 inclusions. The number of inclusions can be reduced by increasing the basicity and the ratio of CaO to Al2O3 in the initial slag.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA