Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Hum Comput Interact ; 40(9): 2168-2184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863735

RESUMEN

The usability of virtual reality (VR) training applications is crucial for their success, but examining the usability in the early development stages remains challenging. A realistic and plausible solution would be revisiting and reconciling Heuristics Evaluation (HE) methods among the most widely used usability inspection methods in the human-computer interaction (HCI) domain. While research on studying and using HE methods is growing within the VR domain, few studies have considered the novel VR environment challenges new requirements for fitting HE methods to the context and applying them effectively. To this end, we conducted a user study with 14 evaluators using the standard HE methods to complete two HE sessions for a VR training application. We identified five critical challenges that evaluators encountered in the HE process by observing and interviewing them. Based on our findings, we discuss the importance of considering an easy-to-use heuristic set, how we can facilitate the HE procedures in the VR context, and the opportunities for developing HE-supporting tools.

2.
Anal Chem ; 96(21): 8458-8466, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38710075

RESUMEN

G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.


Asunto(s)
Benzotiazoles , ADN , Colorantes Fluorescentes , Uracil-ADN Glicosidasa , Benzotiazoles/química , Benzotiazoles/metabolismo , Colorantes Fluorescentes/química , ADN/química , ADN/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Uracil-ADN Glicosidasa/química , Espectrometría de Fluorescencia , Fluorescencia , Técnicas Biosensibles/métodos , Dicroismo Circular , Humanos
3.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668183

RESUMEN

Reproductive disorders and declining fertility rates are significant public health concerns affecting birth rates and future populations. Male infertility, often due to spermatogenesis defects, may be linked to environmental pollutants like nickel nanoparticles (Ni NPs). Ni NPs are extensively utilized across different industries. Nevertheless, their potential adverse effects cannot be overlooked. Previous studies have linked the reproductive toxicity induced by Ni NPs with disturbances in mitochondrial function. Mitochondrial division/fusion dynamics are crucial to their proper function, yet little is known about how Ni NPs perturb these dynamics and whether such perturbation contributes to the impairment of the male reproductive system. Herein, we demonstrated that the exposure of Ni NPs to the mouse-derived spermatogonia cell line (GC-1 cells) triggered DRP1-mediated mitochondrial division and the enhanced impairment of mitochondria, consequently promoting mitochondria-dependent cell apoptosis. Notably, both the mitochondrial division inhibitor (Mdivi-1) and lentiviral-transfected cells with low expression of Dnm1l-DK in these cells could mitigate the toxic effects induced by Ni NPs, pointing to the potential role of mitochondrial dynamics in Ni NP-induced reproductive toxicity. Collectively, our work contributes to the understanding of the mechanisms by which Ni NPs can impact male reproductive function and identifies mitochondrial division as a potential target for intervention.

4.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542356

RESUMEN

Nucleic acid modifications play important roles in biological activities and disease occurrences, and have been considered as cancer biomarkers. Due to the relatively low amount of nucleic acid modifications in biological samples, it is necessary to develop sensitive and reliable qualitative and quantitative methods to reveal the content of any modifications. In this review, the key processes affecting the qualitative and quantitative analyses are discussed, such as sample digestion, nucleoside extraction, chemical labeling, chromatographic separation, mass spectrometry detection, and data processing. The improvement of the detection sensitivity and specificity of analytical methods based on mass spectrometry makes it possible to study low-abundance modifications and their biological functions. Some typical nucleic acid modifications and their potential as biomarkers are displayed, and efforts to improve diagnostic accuracy are discussed. Future perspectives are raised for this research field.


Asunto(s)
Ácidos Nucleicos , Espectrometría de Masas/métodos , Biomarcadores de Tumor
5.
Thromb Haemost ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242171

RESUMEN

Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.

6.
Anal Chem ; 96(1): 437-445, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150621

RESUMEN

Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.


Asunto(s)
ADN , Guanina , Humanos , ADN/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno , Técnicas de Amplificación de Ácido Nucleico
7.
Molecules ; 28(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37959868

RESUMEN

Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development.


Asunto(s)
Ácido Hialurónico , Piel , Ácido Hialurónico/farmacología , Piel/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción
8.
Plant Foods Hum Nutr ; 78(4): 776-782, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668768

RESUMEN

Phytochemical investigation of 70% EtOH extract of the seeds of Capsella bursa-pastoris led to the isolation of a new cyclobutane organic acid (1), and fourteen known compounds, including two organosulfur compounds (2, 3), two quinonoids (4, 5), five flavonoids (6-10), three sterols (11-13) and two other types (14, 15). The structures of the compounds were elucidated by extensive spectroscopic analyses as well as comparison of their spectroscopic data with those reported in the literature. The antioxidant capacities of all compounds and extractive fractions were evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging test and ferric reducing antioxidant power (FRAP) assay. Then the antioxidative substances were evaluated for their neuroprotective effects against H2O2-induced HT22 cell injury. The results indicated the strong scavenging ability to free radical of the extractive fractions and compounds 1-3, 8-10 and 13, and the ferric reducing antioxidant power of the extractive fractions and compounds 1-3, 8 and 10, which were close to or higher than that of the positive control trolox. The EtOAc fraction, n-BuOH fraction, and compounds 1, 3 and 8 can protect HT-22 cells from oxidative damage.


Asunto(s)
Antioxidantes , Capsella , Antioxidantes/análisis , Peróxido de Hidrógeno , Extractos Vegetales/química , Fitoquímicos/farmacología , Semillas/química
9.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628743

RESUMEN

Immunochromatographic assay (ICA) plays an important role in in vitro diagnostics because of its simpleness, convenience, fastness, sensitivity, accuracy, and low cost. The employment of magnetic nanoparticles (MNPs), possessing both excellent optical properties and magnetic separation functions, can effectively promote the performances of ICA. In this study, an ICA based on MNPs (MNP-ICA) has been successfully developed for the sensitive detection of carcinoembryonic antigen (CEA). The magnetic probes were prepared by covalently conjugating carboxylated MNPs with the specific monoclonal antibody against CEA, which were not only employed to enrich and extract CEA from serum samples under an external magnetic field but also used as a signal output with its inherent optical property. Under the optimal parameters, the limit of detection (LOD) for qualitative detection with naked eyes was 1.0 ng/mL, and the quantitative detection could be realized with the help of a portable optical reader, indicating that the ratio of optical signal intensity correlated well with CEA concentration ranging from 1.0 ng/mL to 64.0 ng/mL (R2 = 0.9997). Additionally, method comparison demonstrated that the magnetic probes were beneficial for sensitivity improvement due to the matrix effect reduction after magnetic separation, and the MNP-ICA is eight times higher sensitive than ICA based on colloidal gold nanoparticles. The developed MNP-ICA will provide sensitive, convenient, and efficient technical support for biomarkers rapid screening in cancer diagnosis and prognosis.


Asunto(s)
Antígeno Carcinoembrionario , Nanopartículas de Magnetita , Oro , Anticuerpos Monoclonales , Inmunoensayo
10.
Phytomedicine ; 120: 155043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639810

RESUMEN

BACKGROUND: Fucoxanthin is the most abundant marine carotenoid derived from brown seaweeds, possesses antioxidant, anti-inflammatory, and neuroprotective properties, and might be benefit for the treatment of neurological disorders. Post-operative cognitive dysfunction (POCD) is a neurological symptom with learning and memory impairments, mainly affecting the elderly after surgery. However, there is no effective treatments for this symptom. PURPOSES: In this study, we evaluated the neuroprotective effects of fucoxanthin against POCD in aged mice after surgery. STUDY DESIGN AND METHODS: The animal model of POCD was established in 12 - 14 month aged mice with a laparotomy. Curcumin was used as a positive control. The beneficial effects of fucoxanthin on POCD was analyzed by behavioral tests. Pro-inflammatory cytokines were measured by Enzyme-linked Immunosorbent Assay (ELISA). And the expressions of key proteins in the Akt and ERK signaling pathways were analyzed by Western blotting analysis. The morphology of microglial cells and astrocytes was explored by immunohistochemical staining. The activity of antioxidant superoxide dismutase (SOD) and catalase (CAT) were measured by anti-oxidative enzyme activity assays. RESULTS: Fucoxanthin at 100 - 200 mg/kg significantly attenuated cognitive dysfunction, with a similar potency as curcumin, in aged mice after surgery. In addition, fucoxanthin and curcumin significantly increased the expression of pAkt, prevented the activation of microglial cells and astrocytes, and inhibited the secretion of pro-inflammatory interleukin-1ß (IL - 1ß) and tumor necrosis factor-α (TNF-α). Furthermore, fucoxanthin and curcumin elevated the ERK pathway and potently increased the activity of antioxidant enzymes. Most importantly, U0126, an inhibitor of the ERK pathway, and wortmannin, an inhibitor of the Akt pathway, significantly abolished the cognitive-enhancing effects, as well as the inhibition of neuroinflammation and the reduction of oxidative stress, induced by fucoxanthin in aged mice after surgery. CONCLUSION: Fucoxanthin might be developed as a functional food or drug for the treatment of POCD by inhibiting neuroinflammation and enhancing antioxidant capacity via the activation of the Akt and ERK signaling pathways.


Asunto(s)
Disfunción Cognitiva , Curcumina , Humanos , Anciano , Animales , Ratones , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt , Antioxidantes/farmacología , Curcumina/farmacología , Enfermedades Neuroinflamatorias , Carotenoides/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología
11.
Int Immunopharmacol ; 123: 110607, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506501

RESUMEN

Neutrophils are a type of lymphocyte involved in innate immune defense. In response to specific stimuli, these phagocytic cells undergo a unique form of cell death, NETosis, during which they release neutrophil extracellular traps (NETs) composed of modified chromatin structures decorated with cytoplasmic and granular proteins. Multiple proteins and pathways have been implicated in the formation of NETs. The cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins, plays a crucial role in resisting deformation, transporting intracellular cargo, and changing shape during movement of eukaryotic cells. It may also have evolved to defend eukaryotic organisms against infection. Recent research focuses on understanding the mechanisms underlying NETs formation and how cytoskeletal networks contribute to this process, by identifying enzymes that trigger NETosis or interact with NETs and influence cellular behavior through cytoskeletal dynamics. An enhanced understanding of the complex relationship between the cytoskeleton and NET formation will provide a framework for future research and the development of targeted therapeutic strategies, and supports the notion that the long-lived cytoskeleton structures may have a lasting impact on this area of research.


Asunto(s)
Trampas Extracelulares , Proteínas del Citoesqueleto/metabolismo , Neutrófilos , Fagocitosis , Citoesqueleto
12.
Macromol Biosci ; 23(10): e2300113, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37326455

RESUMEN

Central airway stenosis is a condition that the diameter of the trachea or main bronchus shrinkage is caused by external compression or internal tissue hyperplasia, which can cause difficulty breathing, asphyxia, and even death. Airway stenting is an easy way to restore the patency of the central airway, but airway stents commonly used in clinical practice can lead to complications such as mucus plugging, bacterial infection, and granulation tissue hyperplasia. Moreover, the non-degradable characteristic makes it requires a second operation to remove, which has the potential to cause tissue damage. In this study, a biodegradable airway stent is fabricated by microinjection molding using the bioelastomer of poly (L-lactide-co-ε-caprolactone) as the matrix material. The airway stent has excellent mechanical properties and an appropriate degradation rate. The hydrophilic surface of the airway stent can inhibit mucus plugging. The loading of silver nanoparticles and cisplatin endows the stent with antibacterial and anti-hyperplastic functions. In vitro and in vivo experiments demonstrate that this study provides an antibacterial and anti-hyperplastic biodegradable airway stent with elastic properties to avoid secondary removal operation and reduce complications associated with mucus plugging, bacterial infection, and granulation tissue hyperplasia.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37293199

RESUMEN

The use of virtual reality (VR) in laboratory skill training is rapidly increasing. In such applications, users often need to explore a large virtual environment within a limited physical space while completing a series of hand-based tasks (e.g., object manipulation). However, the most widely used controller-based teleport methods may conflict with the users' hand operation and result in a higher cognitive load, negatively affecting their training experiences. To alleviate these limitations, we designed and implemented a locomotion method called ManiLoco to enable hands-free interaction and thus avoid conflicts and interruptions from other tasks. Users can teleport to a remote object's position by taking a step toward the object while looking at it. We evaluated ManiLoco and compared it with state-of-the-art Point & Teleport in a within-subject experiment with 16 participants. The results confirmed the viability of our foot- and head-based approach and better support concurrent object manipulation in VR training tasks. Furthermore, our locomotion method does not require any additional hardware. It solely relies on the VR head-mounted display (HMD) and our implementation of detecting the user's stepping activity, and it can be easily applied to any VR application as a plugin.

15.
Biomacromolecules ; 24(6): 2741-2754, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37222588

RESUMEN

In vascular tissue engineering, a scaffold that can enhance the proliferation of endothelial cells (ECs) while inhibiting the synthetic differentiation of smooth muscle cells (SMCs) is crucial to prevent thrombus and restenosis after graft implantation. However, it is always challenging to incorporate both properties simultaneously in a vascular tissue engineering scaffold. In this study, a novel composite material was developed by combining a synthetic biopolymer of poly(l-lactide-co-caprolactone) (PLCL) and a natural biopolymer of elastin through electrospinning. Cross-linking of the PLCL/elastin composite fibers using EDC/NHS was performed to stabilize the elastin component. The incorporation of elastin into PLCL was found to enhance the hydrophilicity and biocompatibility of the resulting PLCL/elastin composite fibers, as well as the mechanical properties. Additionally, as a natural component of the extracellular matrix, elastin displayed antithrombotic properties reducing platelet adhesion and improving blood compatibility. Results of cell culture experiments with human umbilical vein ECs (HUVECs) and human umbilical artery SMCs (HUASMCs) showed that the composite fiber membrane had high cell viability, promoting the proliferation and adhesion of HUVECs and inducing a contractile phenotype in HUASMCs. These results indicate that the PLCL/elastin composite material has great potential for use in vascular graft applications due to its favorable properties and rapid endothelialization and contractile phenotypes of cells.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Elastina/metabolismo , Poliésteres/metabolismo , Andamios del Tejido , Células Endoteliales de la Vena Umbilical Humana , Miocitos del Músculo Liso
16.
Heart Lung ; 60: 74-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36931009

RESUMEN

BACKGROUND: Survivors of sepsis often develop chronic critical illness after the inflammatory stage, resulting in death or hospital readmission. The long-term prognosis of older patients with sepsis and the associated factors, particularly frailty, are not well studied. OBJECTIVES: To investigate the effect of frailty on the quality of life (QoL) and mortality in older patients after one year of sepsis diagnosis. METHODS: This prospective study included patients admitted to a specialized geriatric intensive care unit between May 2018 and April 2019. Patients were grouped according to the Clinical Frailty Scale as severely frail, mildly to moderately frail, and non-frail/vulnerable. The primary outcome was QoL one year after sepsis diagnosis, measured using the European QoL 5-Dimension (EQ-5D) and 12-item Short Form. The secondary outcome was one-year survival. RESULTS: Of the 211 participants, 75 (35.5%) completed the QoL surveys. Of them, 37 (49.3%) did not return to their baseline QoL one year after sepsis diagnosis. The rate of reported mobility problems (a dimension of the EQ-5D) increased by 100% during the year. Additionally, survivors in the severely frail group exhibited poorer QoL at one year than those in the mildly to moderately frail and non-frail/vulnerable groups. The one-year mortality in the severely frail group was 75.9%, with an adjusted hazard ratio of 1.70 (95% confidence interval, 1.02-2.82, p = 0.041). CONCLUSIONS: Frailty significantly impacts the one-year prognosis in older patients with sepsis. This research highlights the need for frailty management and physical rehabilitation in frail older patients at risk of poor prognosis, with implications for improving transitional and post-acute care services.


Asunto(s)
Fragilidad , Sepsis , Humanos , Anciano , Fragilidad/complicaciones , Estudios Prospectivos , Calidad de Vida , Anciano Frágil , Evaluación Geriátrica/métodos , Sepsis/complicaciones
17.
Toxicology ; 486: 153449, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738820

RESUMEN

Radon (222Rn) is a naturally occurring radioactive gas. Forty percent of the natural radiation to which the human body is exposed comes from radon gas. Long-term exposure to high concentrations of radon induces systemic damage. However, the effect of such exposure on gut microbiota still remains unclear. We explored the effects of radon exposure on gut microbiota and its metabolites short-chain fatty acids (SCFAs) in BALB/c mice by cumulative inhalation of radon at 30, 60, and 120 working level months (WLM). The radon-exposed mice showed slow body weight gain, decreased serum triglycerides and low-density lipoproteins, decreased diversity, lower community structure, and altered abundance of the gut microbiota. Lachnospiraceae, Amaricoccus, and Enterococcus could differentiate the IR30, 60, and 120 WLM groups, respectively. Meanwhile, radon exposure affected the metabolic functions of the gut microbiota, mainly carbohydrate, amino acid, and lipid metabolic pathways. The altered abundance of microbiota and resulting reduced levels of SCFAs may aggravate the damage caused by radon exposure.


Asunto(s)
Microbioma Gastrointestinal , Radón , Humanos , Animales , Ratones , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Radón/toxicidad
18.
J Ethnopharmacol ; 307: 116227, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36739928

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Verbenalin is a major compound in Verbena officinalis L. Verbena officinalis L was first recorded in the 'Supplementary Records of Famous Physicians.' Verbenalin (VE) is its active constituent and has been found to have many biological effects, including anti-obesity, anti-inflammatory, and antioxidant activities, removing jaundice, and treating malaria. It could treat lump accumulation, dysmenorrhea, throat obstruction, edema, jaundice, and malaria. Palmitic acid (PA), oleic acid (OA), ethanol, and acetaminophen liver injuries have been proven to benefit from verbenalin. AIM OF THE STUDY: To study the effects of verbenalin on the prevention of alcoholic steatohepatitis (ASH) through the regulation of oxidative stress and mitochondrial dysfunction by regulating MDMX (Murine double minute X)/PPARα (Peroxisome proliferator-activated receptor alpha)-mediated ferroptosis. MATERIAL AND METHODS: C57BL/6 mice treated with alcohol followed by the Gao-Binge protocol were administered verbenalin by gavage simultaneously. The mitochondrial mass and morphology were visualized using TEM. AML-12 cells were stimulated with ethanol to mimic ASH in vitro. Western blotting, co-immunoprecipitation, and kit determination were simultaneously performed. The target protein of verbenalin was identified by molecular docking, and cellular thermal shift assay (CETSA) further confirmed its interactions. RESULTS: Verbenalin alleviates oxidative stress and ferroptosis in alcohol-associated steatohepatitis. To elucidate the molecular mechanism by which verbenalin inhibits abnormal mitochondrial dysfunction, molecular docking was performed, and MDMX was identified as the target protein of verbenalin. CETSA assays revealed a specific interaction between MDMX and verbenalin. Co-immunoprecipitation demonstrated that PPARα played a critical role in promoting the ability of MDMX to affect ferroptosis. Verbenalin regulates MDMX/PPARα-mediated ferroptosis in AML-12 cells. CONCLUSION: Verbenalin regulates ferroptosis and highlights the therapeutic potential of verbenalin and ferroptosis inhibition in reducing alcoholic steatohepatitis.


Asunto(s)
Hígado Graso Alcohólico , Ferroptosis , Leucemia Mieloide Aguda , Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Ratones , Etanol/farmacología , Hígado Graso Alcohólico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Hígado , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , Proteínas/metabolismo
19.
Molecules ; 28(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677903

RESUMEN

Synergistic drug combinations have demonstrated effective therapeutic effects in cancer treatment. Deep learning methods accelerate identification of novel drug combinations by reducing the search space. However, potential adverse drug-drug interactions (DDIs), which may increase the risks for combination therapy, cannot be detected by existing computational synergy prediction methods. We propose DEML, an ensemble-based multi-task neural network, for the simultaneous optimization of five synergy regression prediction tasks, synergy classification, and DDI classification tasks. DEML uses chemical and transcriptomics information as inputs. DEML adapts the novel hybrid ensemble layer structure to construct higher order representation using different perspectives. The task-specific fusion layer of DEML joins representations for each task using a gating mechanism. For the Loewe synergy prediction task, DEML overperforms the state-of-the-art synergy prediction method with an improvement of 7.8% and 13.2% for the root mean squared error and the R2 correlation coefficient. Owing to soft parameter sharing and ensemble learning, DEML alleviates the multi-task learning 'seesaw effect' problem and shows no performance loss on other tasks. DEML has a superior ability to predict drug pairs with high confidence and less adverse DDIs. DEML provides a promising way to guideline novel combination therapy strategies for cancer treatment.


Asunto(s)
Perfilación de la Expresión Génica , Redes Neurales de la Computación , Interacciones Farmacológicas , Terapia Combinada , Combinación de Medicamentos
20.
Phytomedicine ; 109: 154585, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610117

RESUMEN

BACKGROUND: Hastatoside is an iridoid glycoside extracted from the herb, Verbena officinalis, that exerts various pharmacological effects, including anti-inflammatory, sleep-promoting, and analgesic effects. However, only a few studies have reported the efficacy of hastatoside in liver fibrosis. Liver fibrosis is a pathophysiological process, and its persistence can seriously affect the quality of life and well-being of the patients. HYPOTHESIS/PURPOSE: This study aimed to investigate the role of hastatoside on liver fibrosis and its possible underlying mechanisms. METHODS: C57BL/6 J mice with carbon tetrachloride (CCl4)-induced hepatic fibrosis were used as the in vivo models. Histological features of the liver were observed using Masson's trichrome and hematoxylin-eosin staining. Alanine aminotransferase and aspartate aminotransferase levels and the hepatic fibrosis indices (type 3 procollagen, laminin, and hyaluronic acid) were measured using corresponding assay kits. LX-2 human hepatic stellate cells (HSCs) stimulated with the transforming growth factor ß1 were used as the vitro models. Transfection of the glycogen synthase kinase (GSK)-3ß small interfering RNA (siRNA) and ß-catenin plasmids was also performed in vitro. Protein levels of GSK-3ß, phospho-GSK-3ß (Ser 9), α-smooth muscle actin, collagen type I alpha 1, c-Myc, cyclin D1, and ß-catenin were determined via western blotting. Moreover, the p-GSK-3ß:GSK-3ß ratio was calculated to determine the GSK-3ß activity. RESULTS: Hastatoside prevented CCl4-induced liver injury and histological damage. It inhibited the upregulation of α-SMA and Col1α1 levels in a CCl4-induced mouse hepatic fibrosis model. In vitro, hastatoside inhibited the proliferation and activation of HSCs by decreasing the expression levels of cyclin D1 and c-Myc and the proportion of LX-2 cells activated in the G0/G1 phase. Molecular docking results showed that hastatoside bound to GSK-3ß. Hastatoside significantly increased the GSK-3ß activity and inhibited the downstream effector expression of ß-catenin. CONCLUSION: These findings suggest that hastatoside can bind to GSK-3ß and promote its activity, while inhibiting the GSK-3ß downstream effector expression of ß-catenin, thereby inhibiting the activation and proliferation of HSCs, which further prevents the development of liver fibrosis. These results provide innovative insights into the underlying liver fibrosis. Moreover, hastatoside is a potential anti-fibrosis monomer that can potentially be used for the treatment of liver fibrosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Glucógeno Sintasa Quinasa 3 beta , Glicósidos Iridoides , Animales , Humanos , Ratones , beta Catenina/metabolismo , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Estrelladas Hepáticas , Hígado , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Calidad de Vida , Transducción de Señal , Glicósidos Iridoides/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA