RESUMEN
Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin ß1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.
Asunto(s)
Carcinoma de Células Escamosas , Meduloblastoma , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/genética , Meduloblastoma/patología , Línea Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Metástasis de la Neoplasia , Movimiento Celular , Fenotipo , Cadherinas/metabolismo , Cadherinas/genética , Niño , AutofagiaRESUMEN
Magnetic Resonance Imaging (MRI) is an important diagnostic technique for brain tumors due to its ability to generate images without tissue damage or skull artifacts. Therefore, MRI images are widely used to achieve the segmentation of brain tumors. This paper is the first attempt to discuss the use of optimization spiking neural P systems to improve the threshold segmentation of brain tumor images. To be specific, a threshold segmentation approach based on optimization numerical spiking neural P systems with adaptive multi-mutation operators (ONSNPSamos) is proposed to segment brain tumor images. More specifically, an ONSNPSamo with a multi-mutation strategy is introduced to balance exploration and exploitation abilities. At the same time, an approach combining the ONSNPSamo and connectivity algorithms is proposed to address the brain tumor segmentation problem. Our experimental results from CEC 2017 benchmarks (basic, shifted and rotated, hybrid, and composition function optimization problems) demonstrate that the ONSNPSamo is better than or close to 12 optimization algorithms. Furthermore, case studies from BraTS 2019 show that the approach combining the ONSNPSamo and connectivity algorithms can more effectively segment brain tumor images than most algorithms involved.
Asunto(s)
Algoritmos , Neoplasias Encefálicas , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , MutaciónRESUMEN
BACKGROUND: CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS: The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS: OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS: We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.
Asunto(s)
Proteínas de Ciclo Celular , Resistencia a Antineoplásicos , Proteínas Nucleares , Ubiquitinación , Animales , Humanos , Ratones , Resistencia a Antineoplásicos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Ratones Noqueados , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Modelos Animales de EnfermedadRESUMEN
Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein whose expression has been previously implicated in cancer metastasis. However, the exact molecular mechanisms by which PTGFRN influences cancer progression are still unknown. As such, our laboratory set out to investigate how PTGFRN knockdown affected the expression of other proteins. We also carried out coimmunoprecipitation experiments using a monoclonal anti-PTGFRN antibody. We employed mass spectrometry-based proteomics for both experiments to identify proteins that were associated with PTGFRN. Our data show that PTGFRN knockdown increased pathways related to innate immune responses and decreased pathways associated with the synthesis of metabolic precursors and protein processing, among others. Additionally, the coimmunoprecipitation experiments indicated that PTGFRN is associated with proteins involved in processing and metabolism, as well as VEGF signaling molecules. These results highlight the role of PTGFRN as a protein processing regulator, which may be influencing cancer progression.
RESUMEN
INTRODUCTION: Ropivacaine oil delivery depot (RODD) can slowly release ropivacaine and block nerves for a long timejavascript:;. The aim of the present work was to investigate the safety, pharmacokinetics, and preliminary pharmacodynamics of RODD in subcutaneous injection among healthy subjects. METHODS: The abdomens of 3 subjects were subcutaneously administered with a single-needle RODD containing 12~30 mg of ropivacaine. The irritation, nerve blocking range and optimum dose were investigated. Forty-one subjects were divided into RODD groups containing 150, 230, 300, 350 and 400 mg of ropivacaine and a ropivacaine hydrochloride injection (RHI) 150 mg group. Multineedle subcutaneous injection of RODD or RHI was performed in the abdomens of the subjects. The primary endpoint was a safe dose or a maximum dose of ropivacaine (400 mg). Subjects' vital signs were observed; their blood was analyzed; their cardiovascular system and nervous systems were monitored, and their dermatological reactions were observed and scored. Second, the ropivacaine concentrations in plasma were determined, pharmacokinetic parameters were calculated, and the anesthetic effects of RODD were studied, including RODD onset time, duration and intensity of nerve block. RESULTS: Single-needle injection of RODD 24 mg was optimal for 3 subjects, and the range of nerve block was 42.5±20.8 mm. Multineedle subcutaneous injection of RODD in the abdomens of subjects was safe, and all adverse events were no more severe than grade II. The incidence rate of grade II adverse events, such as pain, and abnormal ST and ST-T segment changes on electrocardiography, was approximately 1%. The incidence rate of grade I adverse events, including erythema, papules, hypertriglyceridemia, and hypotension was greater than 10%. Erythema and papules were relieved after 24 h and disappeared after 72 h. Other adverse reactions disappeared after 7 days. The curve of ropivacaine concentration-time in plasma presented a bimodal profile. The results showed that ropivacaine was slowly released from the RODD. Compared with the 150 mg RHI group, Tmax was longer in the RODD groups. In particular, Tmax in the 400 mg RODD group was longer than that in the RHI group (11.8±4.6 h vs. 0.77±0.06 h). The Cmax in the 150 mg RODD group was lower than that in the 150 mg RHI group (0.35±0.09 vs. 0.58±0.13 µg·mL-1). In particular, the Cmax increased by 48% when the dose was increased by 2.6 times in the 400 mg group. Cmax, the AUC value and the intensity of the nerve block increased with increasing doses of RODD. Among them, the 400 mg RODD group presented the strongest nerve block (the percentage of level 2 and 3, 42.9%). The corresponding median onset time was 0.42 h, and the duration median was 35.7â47.7 h. CONCLUSIONS: RODD has a sustained release effect. Compared with the RHI group, Tmax was delayed in the RODD groups, and the duration of nerve block was long. No abnormal reaction was found in the RODD group containing 400 mg of ropivacaine after subcutaneous injection among healthy subjects, suggesting that RODD was adequately safe. TRIAL REGISTRATION: Chictr.org: CTR2200058122; Chinadrugtrials.org: CTR20192280.
Asunto(s)
Hipotensión , Humanos , Ropivacaína/efectos adversos , Voluntarios Sanos , Dolor , ElectrocardiografíaRESUMEN
One of the most common routes of chronic hepatitis B virus (HBV) infection is mother-to-child transmission (MTCT). Approximately 6.4 million children under the age of five have chronic HBV infections worldwide. HBV DNA high level, HBeAg positivity, placental barrier failure, and immaturity of the fetal immune are the possible causes of chronic HBV infection. The passive-active immune program for children, which consists of the hepatitis B vaccine and hepatitis B immunoglobulin, and antiviral therapy for pregnant women who have a high HBV DNA load (greater than 2 × 105 IU/ml), are currently two of the most important ways to prevent the transmission of HBV from mother to child. Unfortunately, some infants still have chronic HBV infections. Some studies have also found that some supplementation during pregnancy can increase cytokine levels and then affect the level of HBsAb in infants. For example, IL-4 can mediate the beneficial effect on infants' HBsAb levels when maternal folic acid supplementation. In addition, new research has indicated that HBV infection in the mother may also be linked to unfavorable outcomes such as gestational diabetes mellitus, intrahepatic cholestasis of pregnancy, and premature rupture of membranes. The changes in the immune environment during pregnancy and the hepatotropic nature of HBV may be the main reasons for the adverse maternal outcomes. It is interesting to note that after delivery, the women who had a chronic HBV infection may spontaneously achieve HBeAg seroconversion and HBsAg seroclearance. The maternal and fetal T-cell immunity in HBV infection is important because adaptive immune responses, especially virus-specific CD8 T-cell responses, are largely responsible for viral clearance and disease pathogenesis during HBV infection. Meanwhile, HBV humoral and T-cell responses are important for the durability of protection after fetal vaccination. This article reviews the literature on immunological characteristics of chronic HBV-infected patients during pregnancy and postpartum, blocking mother-to-child transmissions and related immune mechanisms, hoping to provide new insights for the prevention of HBV MTCT and antiviral intervention during pregnancy and postpartum.
Asunto(s)
Hepatitis B Crónica , Hepatitis B , Embarazo , Lactante , Femenino , Humanos , Virus de la Hepatitis B , Transmisión Vertical de Enfermedad Infecciosa , ADN Viral , Antígenos e de la Hepatitis B , Placenta , Linfocitos TRESUMEN
Objective: To observe the effectiveness and safety of Lianhua Qingwen granule in the treatment of non-influenza viral pneumonia. Methods: This study was a multicenter, randomized, double-blind, placebo-controlled trial. Subjects who met the inclusion and exclusion criteria and were clinically diagnosed with viral pneumonia (negative for influenza virus) were randomly divided into the Lianhua Qingwen granule trial group and placebo control group. Patients in the trial group was given Lianhua Qingwen granule, 2 bags at a time, 3 times a day, and the controls were given placebo, with a treatment course of 7 days. Patients' clinical symptoms and signs, and treatment-associated adverse events were observed. Subjects should be included in the full analysis set (FAS) as long as they were all given the medication and had an effectiveness test performed after randomization. Subjects should be included in the Per Protocol Set (PPS),a subset of the total analysis set, which should contain those with strong compliance, no protocol violations, and complete baseline values for the primary indicators. Results: A total of 169 subjects were enrolled in 12 subcenters, including 151 (76 in the trial group and 75 in the control group) in the FAS and 140 (68 in the trial group and 72 in the control group) in the PPS. After 7 days of treatment, the clinical symptom relief rates were 82.98% (FAS) and 87.12% (PPS) in the trial group, and 75.11% (FAS) and 76.02% (PPS) in the control group, respectively. The clinical symptom relief rates in the trial group were significantly higher than those in the control group (p < 0.001). Significant improvements in single symptoms of cough and expectoration in the trial group were observed compared with the control group (p < 0.05). There were no statistical differences in fever, sputum color change, chest pain, muscle pain, dyspnea, chills, and thirst between the two groups (p > 0.05). Safety: There were no significant differences in body weight, vital signs, blood routine, urine routine, stool routine, and blood biochemical indicators (CK, AST, ALT, Cr, and Bun) between the two groups before and after treatment (p > 0.05). During treatment, there were no significant differences in the incidence of adverse events and serious adverse events between the two groups (p > 0.05). Conclusion: Lianhua Qingwen granules improved the clinical symptoms of patients with non-influenza virus pneumonia, especially ameliorating cough and expectoration. Lianhua Qingwen granules were associated with good safety.
RESUMEN
Objective: To investigate the sustained virological response and relapse in chronic hepatitis B (CHB) patients with hepatitis B e antigen (HBeAg) positive after stopping oral antiviral drugs, and to monitor the disease progression and the incidence of adverse events such as liver cirrhosis and hepatocellular carcinoma. Methods: This is a prospective observational study. Patients who continued nucleos(t)ide analogue (NA) treatment after achieving HBeAg seroconversion for more than 3 years were enrolled. After signing the informed consent form, patients stopped NA treatment and received follow-up. During the follow-up, the antiviral treatment information of the patients was collected, and the follow-up observation was carried out every 3 months since the enrollment. We monitored the virological indexes, liver and kidney function, serology and liver imaging during follow-up. The purpose of this study was to explore the sustained virological response rate, HBV DNA recurrence rate, clinical relapse rate and the related factors after drug withdrawal. Results: A total of 82 patients were enrolled, including 42 males (51.22%) and 40 females (48.78%), with a median age of 34.00 (31.00, 37.25) years. All enrolled patients were followed up for 1 year. At the end of the follow-up, 36.59% (30/82) of patients had sustained virological response, 63.41% (52/82) of patients had HBV DNA reactivation, 17.07% (14/82) of patients had clinical relapse, and 10.98% (9/82) of patients had HBeAg reversion. During the follow-up, there were no adverse events such as liver cirrhosis and hepatocellular carcinoma. The median level of hepatitis B surface antigen (HBsAg) in patients with sustained virological response was lower than that in patients with HBV DNA reactivation (2.92 vs.3.18 log10IU/ml, Z=-1.492/P=0.136), and the median level of baseline HBsAg in patients with HBV DNA reactivation was lower than that in patients with clinical relapse (3.01 vs.3.45 log10IU/mL, Z=-1.795/P=0.073), but the difference was not significant. There was no significant statistical difference between patients with sustained virological response and HBV DNA reactivation of the median total treatment time [69.50 (56.25, 86.00) vs.62.50 (44.00, 88.50) months, Z=-0.689/P=0.491], and the consolidation treatment time [41.50 (36.75, 54.75) vs.40.50 (36.00, 53.75) months, Z=-0.419/P=0.675]. Conclusion: The sustained virological response rate of HBeAg positive CHB patients after stopping oral antiviral treatment is lower, and it is more common in patients with lower HBsAg levels. Patients still need to be closely monitored after stopping NA therapy.
Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Hepatitis B , Neoplasias Hepáticas , Femenino , Humanos , Masculino , Antivirales/efectos adversos , Carcinoma Hepatocelular/tratamiento farmacológico , Enfermedad Crónica , ADN Viral , Antígenos e de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Neoplasias Hepáticas/tratamiento farmacológico , AdultoRESUMEN
Spiking neural P systems (SN P systems), inspired by biological neurons, are introduced as symbolical neural-like computing models that encode information with multisets of symbolized spikes in neurons and process information by using spike-based rewriting rules. Inspired by neuronal activities affected by enzymes, a numerical variant of SN P systems called enzymatic numerical spiking neural P systems (ENSNP systems) is proposed wherein each neuron has a set of variables with real values and a set of enzymatic activation-production spiking rules, and each synapse has an assigned weight. By using spiking rules, ENSNP systems can directly implement mathematical methods based on real numbers and continuous functions. Furthermore, ENSNP systems are used to model ENSNP membrane controllers (ENSNP-MCs) for robots implementing wall following. The trajectories, distances from the wall, and wheel speeds of robots with ENSNP-MCs for wall following are compared with those of a robot with a membrane controller for wall following. The average error values of the designed ENSNP-MCs are compared with three recently fuzzy logical controllers with optimization algorithms for wall following. The experimental results showed that the designed ENSNP-MCs can be candidates as efficient controllers to control robots implementing the task of wall following.
Asunto(s)
Redes Neurales de la Computación , Neuronas , Neuronas/fisiología , Sinapsis/fisiología , Algoritmos , Lógica Difusa , Potenciales de Acción/fisiología , Modelos NeurológicosRESUMEN
Introduction: Oral fluids (OFs) have been broadly used as non-invasive samples for evaluating protective IgG antibodies from natural infection or vaccination, especially in pediatric populations. Methods: Paired OF and serum were collected from both individuals who received a booster dose of the inactive coronavirus disease 2019 (COVID-19) vaccine as well as those who did not have a history of COVID-19 vaccination and infection (as the control group). The total human IgG antibody (HIgG) content was evaluated as a marker of OF sampling quality. An in-house adapted magnetic particle-based chemiluminescence immunoassay was used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibody detection in the OF. The SARS-CoV-2 IgG antibody in the serum samples was detected using a commercial immunoassay. Results: In total, 579 paired OF and serum samples were collected. An additional 172 OF samples were collected from preschool children. The results indicated that the HIgG concentration in qualified OF samples should be higher than 0.3 µg/mL. Compared to the serum assay, the in-house OF immunoassay for detecting IgG antibodies against SARS-CoV-2 had 95.06% accuracy, 95.03% sensitivity, and 100% specificity. Conclusions: Overall, the in-house immunoassay for detecting SARS-CoV-2 IgG antibodies in OF showed high potential for application towards serological surveillance and immunization effect assessment after large-scale, inactive COVID-19 vaccination in China.
RESUMEN
Objective: To investigate the factors influencing the chronicity of drug-induced liver injury (DILI) caused by Chinese herbal medicine. Methods: Patients with DILI diagnosed by using the RUCAM score were enrolled retrospectively. The subjects were patients with DILI induced by taking Chinese herbal medicine and were followed up for 48 weeks. These patients were divided into a cure group and a chronic group. The biochemical indicators were monitored at baseline and every 3 months. Logistic regression was used to analyze the risk factors of DILI chronicity. The ROC (receiver operator characteristic) curve was used to analyze the diagnostic efficiency of each factor. Results: A total of 420 patients with DILI were enrolled; 122 of them were caused by Chinese herbal medicine, 70.5% (86/122) of them were female, chronic group 31.2% (39/122), and cure group 68.0% (83/122); cholinesterase (ChE) in the chronic group was lower than that in the cure group (5467.10 ± 2010.40 U/L vs. 6248.52 ± 1901.78 U/L, p = 0.04, t = 2.078). There was no significant difference in the age between cured patients and chronic patients (p = 0.156, Z = -1.417). There was no significant difference between the prognosis of different genders (p = 0.521, Z = -0.639). The logistic regression analysis showed that baseline lymphocyte (OR = 0.429, 95%CI = 0.205-0.898, p = 0.025) and cholinesterase (OR = 0.088, 95%CI = 0.008-0.994, p = 0.049) were independent risk factors of drug-induced chronicity. Conclusion: Baseline lymphocyte and cholinesterase may be the predictive factors for the chronicity of Chinese herbal medicine-induced liver injury.
RESUMEN
Objective: The ideal endpoint of antiviral therapy in chronic hepatitis B (CHB) patients is to clear hepatitis B surface antigen (HBsAg). This study aimed to evaluate whether the expression of functional molecules on plasmacytoid dendritic cells (pDCs) is associated with HBsAg loss in HBeAg-positive patients during peginterferon alpha-2a (PEG IFN α-2a) therapy. Methods: A single-center prospective cohort study was performed in HBeAg-positive CHB patients who were treated with PEG-IFN α-2a and followed up for 4 years. HBsAg clearance, HBeAg loss and undetectable HBV DNA achieved by PEG-IFN α-2a therapy was considered as functional cure. The frequencies of pDC and CD86+ pDC in peripheral blood, and the mean fluorescence intensity of CD86 (CD86MFI) on the surface of pDC were measured at starting therapy, after 12 and 24 weeks of therapy. Results: Of 63 patients enrolled, 17 patients achieved HBsAg loss. The baseline HBV DNA load in Non-functional-cure group was significantly higher than that in Functional cure group, and the CD86+ pDC% was significantly lower in patients without functional cure. HBV DNA load (OR=0.146, P = 0.002) and CD86+ pDC% (OR=1.183, P = 0.025) were independent factors associated with functional cure confirmed by binary logistic regression analysis. In the Functional cure group, HBsAg, HBeAg, and HBV DNA loads decreased remarkably after 12 weeks and 24 weeks of treatment compared to baseline. In Non-functional-cure group, CD86+ pDC% and CD86MFI increased significantly from baseline after 12 weeks of treatment. In the Functional cure group, compared with baseline, pDC% increased significantly at 24 weeks, while CD86MFI increased significantly after 24 weeks of treatment. Conclusion: The lower the baseline HBV DNA load and the more the baseline CD86+ pDC%, the easier it is for patients to obtain functional cure.
Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Antivirales/uso terapéutico , ADN Viral , Células Dendríticas/metabolismo , Antígenos e de la Hepatitis B , Humanos , Interferón-alfa , Polietilenglicoles , Estudios Prospectivos , Proteínas RecombinantesRESUMEN
The global pandemic of SARS-CoV-2 in the past 2 years has aroused great attention to infectious diseases, and emerging virus outbreaks have brought huge challenges to the global health system. Viruses are specific pathogens that completely rely on host cells for their own survival and disease transmission. At present, a growing number of studies have proved that inducing the death of virus-infected cells can prevent the spread of virus and promote disease recovery. Therefore, many ways to induce the death of infected cells are considered to be beneficial to host immunity. Cell death is a basic biological phenomenon. Programmed cell death (PCD), as an important part of the host's innate immune response, provides effective protection against virus transmission. Pyroptosis, apoptosis, and necroptosis are the most commonly studied pathways of PCD. Recent studies have found that three pathways of cell death can be activated during virus infection. More and more studies have shown the existence of extensive connections between PCDs, and this complex relationship is defined as PANoptosis, an inflammatory PCD pathway regulated by the PANoptosome complex, whose characteristics cannot be explained by any of the three PCD pathways. During viral infection, PANoptosis can promote inflammatory response by inducing the production of inflammatory cytokines and cell death to exert an antiviral mechanism. This article reviews the various effects of cell death pathways during viral infection and provides new ideas for clinical antiviral therapy and related immunotherapy.
RESUMEN
Objective: To explore dynamic changes of cytokines and virological markers associated with hepatitis B surface antigen (HBsAg) loss during peginterferon alpha-2a (PEG-IFN α-2a) treatment in hepatitis B e antigen (HBeAg) positive chronic hepatitis B (CHB) patients. Methods: It was a single-center prospective cohort study. HBeAg-positive CHB patients were prospectively and consecutively enrolled. Cytokines were detected at baseline, week 12 and 24 of PEG-IFN treatment. HBsAg disappearance rate was the primary evaluation index at 48 weeks of PEG-IFN treatment. Results: Among 100 patients who completed the 48-week PEG-IFN α-2a treatment, 38 patients achieved serum HBeAg disappearance, 25 patients achieved HBeAg seroconversion, 9 patients achieved functional cure, 37 patients had HBsAg decline of ≥1 log IU/ml, and 8 patients produced hepatitis B surface antibody (HBsAb). Albumin (ALB), fms-like tyrosine kinase 3 ligand (FLT3-L) and interferon-alpha2 (IFN-α2) in the clinical cure group were significantly lower than those in the non-clinical-cure group at baseline. After 12 weeks of treatment, HBsAg in the clinical cure group was significantly lower than that in the non-clinical-cure group (median 1.14 vs. 3.45 log10IU/ml, Z=-4.355, P < 0.001). The decrease of HBsAg and hepatitis B virus desoxyribose nucleic acid (HBV DNA) in the clinical cure group was significantly higher than that in non-clinical-cure group (median: HBsAg 1.96 vs. 0.33 log10IU/ml, Z=-4.703, P< 0.001; HBV DNA 4.49 vs.3.13 log10IU/ml, Z=-3.053, P=0.002). The increase of IFN-α2 in the cure group was significantly higher than that in the non-clinical-cure group (497.89 vs. 344.74, Z=-2.126, P=0.034). After 24 weeks of treatment, HBsAg, HBeAg, Flt3-L, and IL-10 in the clinical cure group were significantly lower than those in the non-clinical-cure group (median: HBsAg 0.70 vs. 3.15 log10IU/ml, Z=-4.535, P< 0.001; HBeAg 1.48 vs. 13.72 S/CO, Z = 2.512, P = 0.012; Flt3-l 0.00 vs 2.24 pg/ml, Z = 3.137, P=0.002; IL-10 0.70 vs. 2.71 pg/ml, Z=-4.067, P < 0.001). HBsAg decreased significantly in the clinical cure group compared with non-clinical-cure group (median 3.27 vs. 0.45, Z=-4.463, P < 0.001). Conclusion: Dynamic changes of cytokines and virology markers during early PEG IFN α-2a treatment were associated with HBsAg loss in HBeAg-positive CHB patients.
Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Biomarcadores , Citocinas , ADN Viral , Anticuerpos contra la Hepatitis B , Antígenos e de la Hepatitis B , Humanos , Interferón-alfa , Interleucina-10 , Polietilenglicoles , Estudios Prospectivos , Proteínas RecombinantesRESUMEN
CONTEXT: QiShenYiQi pill (QSYQ) is a traditional Chinese medicine with a myocardial protective effect. OBJECTIVE: To explore the effect of QSYQ on myocardial collagen metabolism in rats with autoimmune cardiomyopathy and explore the underlying mechanism from the aspect of apoptosis. MATERIALS AND METHODS: We established an autoimmune cardiomyopathy model using Lewis rats. The rats were then randomly divided into six groups (n = 8): control, model, 3-methyladenine (15 mg/kg, intraperitoneal injection), QSYQ low-dose (135 mg/kg, gavage), QSYQ medium dose (270 mg/kg, gavage), and QSYQ high-dose (540 mg/kg, gavage) for four weeks. Van Gieson staining was applied for myocardial pathological characteristics, TUNEL fluorescence for myocardial cell apoptosis, enzyme-linked immunosorbent assay (ELISA) for serum PICP, PIIINP, and CTX-I levels, and western blot analysis for type I/III myocardial collagen, Bcl-2, Bax, and caspase-3 proteins. RESULTS: Results showed that QSYQ (135, 270, or 540 mg/kg) significantly reduced the expression of myocardial type I/III collagen, and concentrations of serum PICP, PIIINP, and CTX-I in rats. Moreover, QSYQ could alleviate myocardial fibrosis more effectively at a higher dose. QSYQ could also inhibit myocardial apoptosis via downregulating Bcl-2 expression, and upregulating Bax and caspase-3 expression levels. DISCUSSION AND CONCLUSIONS: The QSYQ can improve myocardial collagen metabolism by inhibiting apoptosis, which provides a potential therapeutic approach for autoimmune cardiomyopathy.
Asunto(s)
Cardiomiopatías , Animales , Apoptosis , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/prevención & control , Colágeno , Medicamentos Herbarios Chinos , Ratas , Ratas Endogámicas LewRESUMEN
The fuzzy reasoning numerical spiking neural P systems (FRNSN P systems) are proposed by introducing the interval-valued triangular fuzzy numbers into the numerical spiking neural P systems (NSN P systems). The NSN P systems were applied to the SAT problem and the FRNSN P systems were applied to induction motor fault diagnosis. The FRNSN P system can easily model fuzzy production rules for motor faults and perform fuzzy reasoning. To perform the inference process, a FRNSN P reasoning algorithm was designed. During inference, the interval-valued triangular fuzzy numbers were used to characterize the incomplete and uncertain motor fault information. The relative preference relationship was used to estimate the severity of various faults, so as to warn and repair the motors in time when minor faults occur. The results of the case studies showed that the FRNSN P reasoning algorithm can successfully diagnose single and multiple induction motor faults and has certain advantages over other existing methods.
RESUMEN
Various diseases caused by food-borne or environmental pathogenic microorganisms have been a persistent threat to public health and global economies. It is necessary to regularly detect microorganisms in food and environment to prevent infection of pathogenic microorganisms. However, most traditional detection methods are expensive, time-consuming, and unfeasible in practice in the absence of sophisticated instruments and trained operators. Point-of-care testing (POCT) can be used to detect microorganisms rapidly on site and greatly improve the efficiency of microbial detection. Lab-on-chip (LOC) is an emerging POCT technology with great potential by integrating most of the experimental steps carried out in the laboratory into a single monolithic device. This review will primarily focus on principles and techniques of LOC for detection of microbial nucleic acid in food and environment, including sample preparation, nucleic acid amplification and sample detection.
RESUMEN
BACKGROUND: Triple negative breast cancer (TNBC) is characterized by invasiveness and short survival. Identifying novel TNBC-targeted therapies, to potentiate standard of care (SOC) therapy, is an unmet need. Progranulin (PGRN/GP88) is a biological driver of tumorigenesis, survival, and drug resistance in several cancers including breast cancer (BC). PGRN/GP88 tissue expression is an independent prognostic factor of recurrence while elevated serum PGRN/GP88 level is associated with poor outcomes. Since PGRN/GP88 expression is elevated in 30% TNBC, we investigated the involvement of progranulin on TNBC. METHODS: The effect of inhibiting PGRN/GP88 expression in TNBC cells by siRNA was investigated. The effects of a neutralizing anti-human PGRN/GP88 monoclonal antibody AG01 on the proliferation and migration of two TNBC cell lines expressing PGRN/GP88 were then examined in vitro and in vivo. RESULTS: Inhibition of GP88 expression by siRNA and AG01 treatment to block PGRN/GP88 action reduced proliferation and migration in a dose-dependent fashion in MDA-MB-231 and HS578-T cells. Western blot analysis showed decreased expression of phosphorylated protein kinases p-Src, p-AKT, and p-ERK upon AG01 treatment, as well as inhibition of tumor growth and Ki67 expression in vivo. CONCLUSION: PGRN/GP88 represents a therapeutic target with companion diagnostics. Blocking PGRN/GP88 with antibody treatment may provide novel-targeted solutions in TNBC treatment which could eventually address the issue of toxicity and unresponsiveness associated with SOC.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Recurrencia Local de Neoplasia , Progranulinas/genética , ARN Interferente Pequeño/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genéticaRESUMEN
QiShenYiQi pill (QSYQ), a traditional Chinese medicine, is used to treat cardiovascular diseases. However, the dose-effect relationship of its intervention in the reactive myocardial fibrosis is elusive. In this work, rat models of reactive myocardial fibrosis induced by partial abdominal aortic coarctation were constructed and randomly classified into the model group, 3-methyladenine group, rapamycin group, QSYQ low-dose group, QSYQ medium-dose group, QSYQ high-dose group, and sham-operated rats (control group). We revealed that QSYQ lowered the heart mass index (HMI), left ventricular mass index (LVMI), and myocardial collagen volume fraction (CVF) levels in a dose-dependent mechanism. Additionally, QSYQ increased the number of autophagosomes, and the expression of myocardial Beclin-1 and LC3B. In contrast, it reduced the expression of myocardial p62 and decreased the ratios of myocardial p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. In conclusion, our results have revealed that QSYQ impacts anti-reactive myocardial fibrosis in a dose-dependent mechanism which is mediated by the activation of myocardial autophagy via the PI3K/AKT/mTOR pathway.