Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
EuroIntervention ; 20(4): e239-e249, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38389469

RESUMEN

BACKGROUND: Severe degenerative mitral regurgitation (DMR) can cause a poor prognosis if left untreated. For patients considered at prohibitive surgical risk, transcatheter edge-to-edge repair (TEER) has become an accepted alternative therapy. The DragonFly transcatheter valve repair system is an innovative evolution of the mitral TEER device family to treat DMR. AIMS: Herein we report on the DRAGONFLY-DMR trial (ClinicalTrials.gov: NCT04734756), which was a prospective, single-arm, multicentre study on the safety and effectiveness of the DragonFly system. METHODS: A total of 120 eligible patients with prohibitive surgical risk and DMR ≥3+ were screened by a central eligibility committee for enrolment. The study utilised an independent echocardiography core laboratory and clinical event committee. The primary endpoint was the clinical success rate, which measured freedom from all-cause mortality, mitral valve reintervention, and mitral regurgitation (MR) >2+ at 1-year follow-up. RESULTS: At 1 year, the trial successfully achieved its prespecified primary efficacy endpoint, with a clinical success rate of 87.5% (95% confidence interval: 80.1-92.3%). The rates of major adverse events, all-cause mortality, mitral valve reintervention, and heart failure hospitalisation were 9.0%, 5.0%, 0.8%, and 3.4%, respectively. MR ≤2+ was 90.4% at 1 month and 92.0% at 1 year. Over time, left ventricular reverse remodelling was observed (p<0.05), along with significant improvements in the patients' functional and quality-of-life outcomes, shown by an increase in the New York Heart Association Class I/II from 32.4% at baseline to 93.6% at 12 months (p<0.001) and increased Kansas City Cardiomyopathy Questionnaire (KCCQ) score of 31.1±18.2 from baseline to 12 months (p<0.001). CONCLUSIONS: The DRAGONFLY-DMR trial contributes to increasing evidence supporting the safety and efficacy of TEER therapy, specifically the DragonFly system, for treating patients with chronic symptomatic DMR 3+ to 4+ at prohibitive surgical risk.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Insuficiencia de la Válvula Mitral , Humanos , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Implantación de Prótesis de Válvulas Cardíacas/métodos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Estudios Prospectivos , Resultado del Tratamiento
2.
Insect Biochem Mol Biol ; 98: 34-47, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29778539

RESUMEN

Insect general odorant binding proteins (GOBPs) have been long thought to bind and transport host plant volatiles to the olfactory receptors on the dendrite membrane of the olfactory neurons. Recent studies indicate that they can also bind female sex pheromones. In present study, two GOBP genes, AipsGOBP1 and AipsGOBP2 were cloned from the adult antennae of Agrotis ipsilon. Tissue expression profiles indicated that both of them are antennae-specific and more abundant in the female antennae than in the male antennae. Temporal expression profiles showed that both AipsGOBP1 and AipsGOBP2 began to express in antennae 3 days prior to adult emergence from pupae, and reached their highest expression level 3 and 4 days after adult emergence, respectively. Mating increased their expression in the female antennae but reduced their expression in the male antennae. In situ hybridization and immunolocalization demonstrated that both AipsGOBP1 and AipsGOBP2 are expressed and co-localized in sensilla basiconica and sensilla trichodea of both sexes. AipsGOBP2 exhibited a high binding affinity in vitro with the two major sex pheromone components Z7-12:Ac and Z9-14:Ac and the four plant volatiles cis-3-hexen-1-ol, oleic acid, dibutyl phthalate and ß-caryophyllene with Ki values less than 5 µM. AipsGOBP1, on the other hand, showed medium binding affinities with the five A. ipsilon sex pheromones and six plant volatiles. AipsGOBP2 also showed a broader ligand-binding spectrum and a greater ligand-binding affinity than AipsGOBP1 with the tested aldehyde and alcohol sex pheromones of Lepidoptera species. Taken together, our results indicate that AipsGOBP2 may play greater roles than AipsGOBP1 does in binding sex pheromones and host plant volatiles.


Asunto(s)
Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Sensilos/metabolismo , Conducta Sexual Animal/fisiología , Secuencia de Aminoácidos , Animales , Femenino , Ligandos , Masculino , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia , Extractos Vegetales , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA