Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 145(51): 28156-28165, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38095593

RESUMEN

Perovskite nanocrystals (PNCs) have attracted substantial attention due to their inspiring intrinsic merits such as low cost, high performance, and solution processability, but when it comes to the usage of blends of different colored PNCs with the purpose of covering the broadband spectrum field, the high degree of instability remains a major bottleneck. Herein, we report a family of dendritic ammonium ligands that act as stiff shell-encapsulating PNCs for improving their stability and suppressing ion permeability in mixed colloidal PNC solutions. The as-synthesized ligand-encapsulated PNCs notably achieve near-unity photoluminescence quantum yields (PLQYs) and strongly resist the unwanted ion exchange reaction under aggressive anion source attack. To fabricate self-powered white-emitting glass, the stabilized mixed colored PNCs were embedded into the laminated glass, which simultaneously acted as absorbers-emitters for luminescent solar concentrators (LSCs) and emitters for white light-emitting glass.

2.
Nat Commun ; 14(1): 3216, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270581

RESUMEN

Although the power conversion efficiency values of perovskite solar cells continue to be refreshed, it is still far from the theoretical Shockley-Queisser limit. Two major issues need to be addressed, including disorder crystallization of perovskite and unbalanced interface charge extraction, which limit further improvements in device efficiency. Herein, we develop a thermally polymerized additive as the polymer template in the perovskite film, which can form monolithic perovskite grain and a unique "Mortise-Tenon" structure after spin-coating hole-transport layer. Importantly, the suppressed non-radiative recombination and balanced interface charge extraction benefit from high-quality perovskite crystals and Mortise-Tenon structure, resulting in enhanced open-circuit voltage and fill-factor of the device. The PSCs achieve certified efficiency of 24.55% and maintain >95% initial efficiency over 1100 h in accordance with the ISOS-L-2 protocol, as well as excellent endurance according to the ISOS-D-3 accelerated aging test.

3.
Small ; 19(41): e2302450, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37312671

RESUMEN

Dion-Jacobson perovskite (DJP) films suffer from the high structural disorder and non-compact morphology, leading to inefficient and unstable solar cells (SCs). Here, how the alkyl chains of alkylammonium pseudohalide additives including methylammonium thiocyanate (MASCN) and ethylammonium thiocyanate (EASCN), and propylammonium thiocyanate (PASCN), impact the microstructures, optoelectronic properties and the performance of the solar cells is investigated. These additives substantially improve the structural order and the morphology of the DJP films, yielding more efficient and stable solar cells than the control device. They behave quite differently in modifying the morphological features. Particularly, EASCN outstands the additives in terms of the superior morphology, which is compact and uniform and consists of the largest flaky grains. Consequently, the corresponding device delivers a power conversion efficiency (PCE) of 15.27% and maintains ≈86% of the initial PCE after aging in the air for 182 h. Conversely, MASCN as an additive produces uneven DJP film and the device maintains only 46% of the initial PCE. PASCN as an additive produces the finest grains in the DJP film, and the corresponding device yields a PCE of 11.95%. From the economical point of view, it costs 0.0025 yuan per device for the EASCN additive, allowing for cost-effective perovskite solar cells.

4.
Nat Commun ; 14(1): 573, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732540

RESUMEN

Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.

5.
J Phys Chem Lett ; 14(8): 2047-2055, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795606

RESUMEN

Optical image encryption technology, in which the emission on/off can be controlled by using specially appointed wavelengths, is useful in information storage and protection. Herein, we report a family of sandwiched heterostructural nanosheets, consisting of three-layered (n = 3) perovskite (PSK) frameworks in center with two different polycyclic aromatic hydrocarbons [triphenylene (Tp) and pyrene (Py)] in periphery. Both heterostructural nanosheets (Tp-PSK and Py-PSK) exhibit blue emissions under UVA-I irradiation; however, different photoluminescent properties are observed under UVA-II. A bright emission of Tp-PSK is attributed to the fluorescence resonance energy transfer (FRET) from Tp-shield to PSK-core, whereas the observed photoquenching phenomenon in Py-PSK is due to the competitive absorption between Py-shield and PSK-core. We exploited the unique photophysical features (on/off emission) of the two nanosheets in a narrow UV window (320-340 nm) for optical image encrypting.

6.
J Mater Chem C Mater ; 9(45): 16217-16225, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34912563

RESUMEN

For many years, fullerene derivatives have been the main n-type material of organic electronics and optoelectronics. Recently, fullerene derivatives functionalized with ethylene glycol (EG) side chains have been showing important properties such as enhanced dielectric constants, facile doping and enhanced self-assembly capabilities. Here, we have prepared field-effect transistors using a series of these fullerene derivatives equipped with EG side chains of different lengths. Transport data show the beneficial effect of increasing the EG side chain. In order to understand the material properties, full structural determination of these fullerene derivatives has been achieved by coupling the X-ray data with molecular dynamics (MD) simulations. The increase in transport properties is paired with the formation of extended layered structures, efficient molecular packing and an increase in the crystallite alignment. The layer-like structure is composed of conducting layers, containing of closely packed C60 balls approaching the inter-distance of 1 nm, that are separated by well-defined EG layers, where the EG chains are rather splayed with the chain direction almost perpendicular to the layer normal. Such a layered structure appears highly ordered and highly aligned with the C60 planes oriented parallel to the substrate in the thin film configuration. The order inside the thin film increases with the EG chain length, allowing the systems to achieve mobilities as high as 0.053 cm2 V-1 s-1. Our work elucidates the structure of these interesting semiconducting organic molecules and shows that the synergistic use of X-ray structural analysis and MD simulations is a powerful tool to identify the structure of thin organic films for optoelectronic applications.

7.
Artículo en Inglés | MEDLINE | ID: mdl-34132516

RESUMEN

Molecular doping makes possible tunable electronic properties of organic semiconductors, yet a lack of control of the doping process narrows its scope for advancing organic electronics. Here, we demonstrate that the molecular doping process can be improved by introducing a neutral radical molecule, namely nitroxyl radical (2,2,6,6-teramethylpiperidin-i-yl) oxyl (TEMPO). Fullerene derivatives are used as the host and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazoles (DMBI-H) as the n-type dopant. TEMPO can abstract a hydrogen atom from DMBI-H and transform the latter into a much stronger reducing agent DMBI•, which efficiently dopes the fullerene derivative to yield an electrical conductivity of 4.4 S cm-1. However, without TEMPO, the fullerene derivative is only weakly doped likely by a hydride transfer following by an inefficient electron transfer. This work unambiguously identifies the doping pathway in fullerene derivative/DMBI-H systems in the presence of TEMPO as the transfer of a hydrogen atom accompanied by electron transfer. In the absence of TEMPO, the doping process inevitably leads to the formation of less symmetrical hydrogenated fullerene derivative anions or radicals, which adversely affect the molecular packing. By adding TEMPO we can exclude the formation of such species and, thus, improve charge transport. In addition, a lower temperature is sufficient to meet an efficient doping process in the presence of TEMPO. Thereby, we provide an extra control of the doping process, enabling enhanced thermoelectric performance at a low processing temperature.

8.
Adv Mater ; 33(4): e2006694, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33306230

RESUMEN

There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor-acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of ≈5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host-dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host-dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 µW m-1 K-2 is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.

9.
ACS Appl Mater Interfaces ; 12(50): 56222-56230, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33263385

RESUMEN

High electrical conductivity is a prerequisite for improving the performance of organic semiconductors for various applications and can be achieved through molecular doping. However, often the conductivity is enhanced only up to a certain optimum doping concentration, beyond which it decreases significantly. We combine analytical work and Monte Carlo simulations to demonstrate that carrier-carrier interactions can cause this conductivity decrease and reduce the maximum conductivity by orders of magnitude, possibly in a broad range of materials. Using Monte Carlo simulations, we disentangle the effect of carrier-carrier interactions from carrier-dopant interactions. Coulomb potentials of ionized dopants are shown to decrease the conductivity, but barely influence the trend of conductivity versus doping concentration. We illustrate these findings using a doped fullerene derivative for which we can correctly estimate the carrier density at which the conductivity maximizes. We use grazing-incidence wide-angle X-ray scattering to show that the decrease of the conductivity cannot be explained by changes to the microstructure. We propose the reduction of carrier-carrier interactions as a strategy to unlock higher-conductivity organic semiconductors.

10.
Nat Commun ; 11(1): 5694, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173050

RESUMEN

The 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly 'phonon glasses'. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being 'electron crystals'. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic 'PGEC' thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm-1 and an ultralow thermal conductivity of <0.1 Wm-1K-1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use 'arm-shaped' double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.

11.
Sci Adv ; 6(29): eabc0810, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32832651

RESUMEN

Proton translocation enables important processes in nature and man-made technologies. However, controlling proton conduction and fabrication of devices exploiting biomaterials remains a challenge. Even more difficult is the design of protein-based bulk materials without any functional starting scaffold for further optimization. Here, we show the rational design of proton-conducting, protein materials exceeding reported proteinaceous systems. The carboxylic acid-rich structures were evolved step by step by exploring various sequences from intrinsically disordered coils over supercharged nanobarrels to hierarchically spider ß sheet containing protein-supercharged polypeptide chimeras. The latter material is characterized by interconnected ß sheet nanodomains decorated on their surface by carboxylic acid groups, forming self-supportive membranes and allowing for proton conduction in the hydrated state. The membranes showed an extraordinary proton conductivity of 18.5 ± 5 mS/cm at RH = 90%, one magnitude higher than other protein devices. This design paradigm offers great potential for bioprotonic device fabrication interfacing artificial and biological systems.

12.
ACS Appl Mater Interfaces ; 12(26): 29505-29512, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32508081

RESUMEN

Recent works demonstrate that polyelectrolytes as a hole transport layer (HTL) offers superior performance in Ruddlesden-Popper perovskite solar cells (RPPSCs) compared to poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The factors contributing to such improvement need to be systematically investigated. To achieve this, we have systematically investigated how the two HTLs affect the morphology, crystallinity, and orientation of the Ruddlesden-Popper perovskite (RPP) films as well as the charge extraction of the RPPSCs. PEDOT:PSS as a HTL leads to RPP films of low crystallinity and with a number of large pinholes. These factors lead to poor charge carrier extraction and significant charge recombination in the RPPSCs. Conversely, a PCP-Na HTL gives rise to highly crystalline and pinhole-free RPPSC films. Moreover, a PCP-Na HTL provides a better energy alignment at the perovskite/HTL interface because of its higher work function compared to PEDOT:PSS. Consequently, devices using PCP-Na as HTLs are more efficient in extracting charge carriers.

13.
Macromol Rapid Commun ; 41(11): e2000124, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32372547

RESUMEN

Blends of semiconducting (SC) and ferroelectric (FE) polymers have been proposed for applications in resistive memories and organic photovoltaics (OPV). For OPV, the rationale is that the local electric field associated with the dipoles in a blend could aid exciton dissociation, thus improving power conversion efficiency. However, FE polymers either require solvents or processing steps that are incompatible with those required for SC polymers. To overcome this limitation, SC (poly(3-hexylthiophene)) and FE (poly(vinylidene fluoride-trifluoroethylene)) components are incorporated into a block copolymer and thus a path to a facile fabrication of smooth thin films from suitably chosen solvents is achieved. In this work, the photophysical properties and device performance of organic solar cells containing the aforementioned block copolymer consisting of poly(vinylidene fluoride-trifluoroethylene): P(VDF-TrFE), poly(3-hexylthiophene): P3HT and the electron acceptor phenyl-C61 -butyric acid methyl ester: [60]PCBM are explored. A decrease in photovoltaic performance is observed in blends of the copolymer with P3HT:[60]PCBM, which is attributed to a less favorable nanomorphology upon addition of the copolymer. The role of lithium fluoride (the cathode modification layer) is also clarified in devices containing the copolymer, and it is demonstrated that ferroelectric compensation prevents the ferroelectricity of the copolymer from improving photovoltaic performance in SC-FE blends.


Asunto(s)
Suministros de Energía Eléctrica , Fulerenos/química , Energía Solar , Procesos Fotoquímicos
14.
Nat Mater ; 19(3): 330-337, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31959952

RESUMEN

Self-assembled monolayers (SAMs) are widely used to engineer the surface properties of metals. The relatively simple and versatile chemistry of metal-thiolate bonds makes thiolate SAMs the preferred option in a range of applications, yet fragility and a tendency to oxidize in air limit their long-term use. Here, we report the formation of thiol-free self-assembled mono- and bilayers of glycol ethers, which bind to the surface of coinage metals through the spontaneous chemisorption of glycol ether-functionalized fullerenes. As-prepared assemblies are bilayers presenting fullerene cages at both the substrate and ambient interface. Subsequent exposure to functionalized glycol ethers displaces the topmost layer of glycol ether-functionalized fullerenes, and the resulting assemblies expose functional groups to the ambient interface. These layers exhibit the key properties of thiolate SAMs, yet they are stable to ambient conditions for several weeks, as shown by the performance of tunnelling junctions formed from SAMs of alkyl-functionalized glycol ethers. Glycol ether-functionalized spiropyrans incorporated into mixed monolayers lead to reversible, light-driven conductance switching. Self-assemblies of glycol ethers are drop-in replacements for thiolate SAMs that retain all of their useful properties while avoiding the drawbacks of metal-thiolate bonds.

15.
ACS Omega ; 4(15): 16481-16492, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31616826

RESUMEN

A series of poly(tetrahydrofuran)s with molecular weights above entanglement molecular weight M e were synthesized, and one of their end-groups was functionalized with a supramolecular entity so that the corresponding polymers form a brushlike structure suitable for comparison with conventional irreversible bottlebrush polymers. To compare their relaxation mechanisms, linear rheology was employed and showed that a hierarchical relaxation, which is usually observed in bottlebrush polymers, occurs in these materials, too. The polymer chain segments close to the supramolecular backbone are highly immobilized due to strong association in the center of polymer brush and cannot relax via reptation mechanism, which is mainly responsible for linear entangled polymer relaxations. Therefore, disentanglement can take much longer through contour length fluctuations and arm retraction processes similar to covalent bottlebrush polymers and combs. The relaxed ends of polymers then act as solvent to let the remaining segments of the polymeric brush undergo Rouse-like motions (constraint release Rouse). At longer times, additional plateau appears, which can be attributed to the relaxation of the entire supramolecular bottlebrush polymer via hopping or reptative motions. With an increase of temperature, viscoelastic solid behavior turns into viscoelastic liquid due to reversible depolymerization of the supramolecular backbone of the bottlebrush polymer. The elastic modulus (G' in the order of kPa) was much less than the values found for the entanglement plateau modulus of linear poly(tetrahydrofuran) (in order of MPa). This low modulus value, which exists up to very low frequencies (high temperatures), makes them a good candidate for supersoft elastomers.

16.
ACS Appl Bio Mater ; 2(1): 406-416, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35016364

RESUMEN

Gadolinium-based magnetic resonance imaging (MRI) contrast agents with biodegradability, biosafety, and high efficiency are highly desirable for tumor diagnosis. Herein, a biodegradable, AS1411-conjugated, α-cyclodextrin polyrotaxane-based MRI contrast agent (AS1411-G2(DTPA-Gd)-SS-PR) was developed for targeted imaging of cancer. The polyrotaxane-based contrast agent was achieved by the complexation of α-cyclodextrin (α-CD) and a linear poly(ethylene glycol) (PEG) chain containing disulfide linkages at two terminals. The disulfides enable the dethreading of the polyrotaxane into excretable small units due to cleavage of the disulfide linkages by reducing agents such as intracellular glutathione (GSH). Furthermore, the second-generation lysine dendron conjugated with gadolinium chelates and AS1411, a G-quadruplex oligonucleotide that has high binding affinity to nucleolin generally presenting a high level on the surface of tumor cells, coupled to the α-CD via click chemistry. The longitudinal relaxivity of AS1411-G2(DTPA-Gd)-SS-PR (11.7 mM-1 s-1) was two times higher than the clinically used Gd-DTPA (4.16 mM-1 s-1) at 0.5 T. The in vitro degradability was confirmed by incubating with 10 mM 1,4-dithiothreitol (DTT). Additionally, the cytotoxicity, histological assessment, and gadolinium retention studies showed that the prepared polyrotaxane-based contrast agent had a superior biocompatibility and was predominantly cleared renally without long-term accumulation toxicity. Importantly, AS1411-G2(DTPA-Gd)-SS-PR displayed the enhanced performance in MRI of breast cancer cells in vitro as well as a subcutaneous breast tumor in vivo due to the targeting ability of the AS1411 aptamer. The enhanced performance was due to efficient multivalent interactions with tumor cells, producing faster accumulation and longer contrast imaging time at the tumor site. This work clearly confirms that the specially designed and fabricated α-CD-based polyrotaxane is a promising contrast agent with an excellent contrast imaging performance and biosafety for tumor MR imaging.

17.
Adv Mater ; 30(44): e1804290, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30222216

RESUMEN

It is demonstrated that the n-type thermoelectric performance of donor-acceptor (D-A) copolymers can be enhanced by a factor of >1000 by tailoring the density of states (DOS). The DOS distribution is tailored by embedding sp2 -nitrogen atoms into the donor moiety of the D-A backbone. Consequently, an electrical conductivity of 1.8 S cm-1 and a power factor of 4.5 µW m-1 K-2 are achieved. Interestingly, an unusual sign switching (from negative to positive) of the Seebeck coefficient of the unmodified D-A copolymer at moderately high dopant loading is observed. A direct measurement of the DOS shows that the DOS distributions become less broad upon modifying the backbone in both pristine and doped states. Additionally, doping-induced charge transfer complexes (CTC) states, which are energetically located below the neutral band, are observed in DOS of the doped unmodified D-A copolymer. It is proposed that charge transport through these CTC states is responsible for the positive Seebeck coefficients in this n-doped system. This is supported by numerical simulation and temperature dependence of Seebeck coefficient. The work provides a unique insight into the fundamental understanding of molecular doping and sheds light on designing efficient n-type OTE materials from a perspective of tailoring the DOS.

18.
Adv Mater ; 30(35): e1803703, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29991093

RESUMEN

In this article it is investigated how the hole extraction layer (HEL) influence the charge recombination and performance in half tin and half lead (FASn0.5 Pb0.5 I3 ) based solar cells (HPSCs). FASn0.5 Pb0.5 I3 film grown on PEDOT:PSS displays a large number of pin-holes and open grain boundaries, resulting in a high defect density and shunts in the perovskite film causing significant bulk and interfacial charge recombination in the HPSCs. By contrast, FASn0.5 Pb0.5 I3 films grown on PCP-Na, an anionic conjugated polymer, show compact and pin-hole free morphology over a large area, which effectively eliminates the shunts and trap states. Moreover, PCP-Na is characterized by a higher work function, which determines a favorable energy alignment at the anode interface, enhancing the charge extraction. Consequently, both the interfacial and bulk charge recombination in devices using PCP-Na HEL are considerably reduced giving rise to an overall improvement of all the device parameters. The HPSCs fabricated with this HEL display power conversion efficiency up to 16.27%, which is 40% higher than the efficiency of the control devices using PEDOT:PSS HEL (11.60%). Furthermore, PCP-Na as HEL offers superior performance in larger area devices compared to PEDOT:PSS.

19.
Adv Mater ; 30(7)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29325212

RESUMEN

In this contribution, for the first time, the molecular n-doping of a donor-acceptor (D-A) copolymer achieving 200-fold enhancement of electrical conductivity by rationally tailoring the side chains without changing its D-A backbone is successfully improved. Instead of the traditional alkyl side chains for poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl](NDI)-alt-5,5'-(2,2'-bithiophene)} (N2200), polar triethylene glycol type side chains is utilized and a high electrical conductivity of 0.17 S cm-1 after doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine is achieved, which is the highest reported value for n-type D-A copolymers. Coarse-grained molecular dynamics simulations indicate that the polar side chains can significantly reduce the clustering of dopant molecules and favor the dispersion of the dopant in the host matrix as compared to the traditional alkyl side chains. Accordingly, intimate contact between the host and dopant molecules in the NDI-based copolymer with polar side chains facilitates molecular doping with increased doping efficiency and electrical conductivity. For the first time, a heterogeneous thermoelectric transport model for such a material is proposed, that is the percolation of charge carriers from conducting ordered regions through poorly conductive disordered regions, which provides pointers for further increase in the themoelectric properties of n-type D-A copolymers.

20.
Curr Med Chem ; 25(25): 2910-2937, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28292237

RESUMEN

Contrast agents (CAs) are widely used to improve the signal-noise ratio in the magnetic resonance imaging (MRI) examinations. The majority of MRI CAs used in clinic are gadolinium( III) (Gd(III)) chelates with low molecular weight. Compared with these small-molecule CAs, Gd(III)-based polymeric magnetic resonance imaging agents (i.e. macromolecular contrast agents, mCAs), prepared by conjugating small-molecule Gd(III) chelates onto macromolecules, possess high relaxivity and relative long blood circulation time, which are favorable for MRI examinations. In last decades, increasing attention was paid to the design of mCAs with various structures, and further evaluation of the MRI performance both in vitro and in vivo. Herein, we focus on the recent progress of mCAs, including structures, properties and applications. Meanwhile, this review also highlights the emerging MRI mCAs with smart response and multi-function: tumor microenvironment- stimulated MRI, multi-mode imaging and MRI-based theranostics.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Polímeros/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA