Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cancer Lett ; 605: 217262, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341452

RESUMEN

Brain metastasis is a major cause of poor prognosis and death in lung adenocarcinoma (LUAD); however, the understanding of therapeutic strategies and mechanisms for brain metastases from LUAD (BM-LUAD) remains notably limited, especially at the proteomics levels. To address this issue, we conducted integrated proteomic and glycoproteomic analyses on 49 BM-LUAD tumors, revealing two distinct subtypes of the disease: BM-S1 and BM-S2. Whole exome sequencing analysis revealed that somatic mutations in STK11 and KEAP1, as well as copy number deletions on chr19p13.3, such as STK11, UQCR11, and SLC25A23, were more frequently detected in BM-S2. In BM-S1 tumors, we observed significant infiltration of GFAP + astrocytes, as evidenced by elevated levels of GFAP, GABRA2, GABRG1 and GAP43 proteins and an enrichment of astrocytic signatures in both our proteomic data and external spatial transcriptomic data. Conversely, BM-S2 tumors demonstrated higher levels of PD-1 immune cell infiltration, supported by the upregulation of PD-1 and LAG-3 genes. These findings suggest distinct microenvironmental adaptations required by the different BM-LUAD subtypes. Additionally, we observed unique glycosylation patterns between the subtypes, with increased fucosylation in BM-S1 and enhanced sialylation in BM-S2, primarily affected by glycosylation enzymes such as FUT9, B4GALT1, and ST6GAL1. Specifically, in BM-S2, these sialylation modifications are predominantly localized to the lysosomes, underscoring the critical role of N-glycosylation in the tumor progression of BM-LUAD. Overall, our study not only provides a comprehensive multi-omic data resource but also offers valuable biological insights into BM-LUAD, highlighting potential mechanisms and therapeutic targets for further investigation.

2.
Anal Bioanal Chem ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251426

RESUMEN

Quantitation of BCR-ABL1 with the quantitative reverse transcriptase polymerase chain reaction (RT-PCR) is very important in monitoring chronic myeloid leukemia (CML), which relies on an RNA reference material. A genomic RNA reference material (RM) containing the BCR-ABL1 P210 fusion mutation was developed, and an absolute quantitative method based on one-step reverse transcription digital PCR (RT-dPCR) was established for characterizing the RM. The proposed dPCR method demonstrates high accuracy and excellent analytical sensitivity, as shown by the linear relationship (0.94 < slope < 1.04, R2≧0.99) between the measured and nominal values of b2a2, b3a2, and ABL1-ref within the dynamic range (104-101 copies/reaction). Homogeneity and stability assessment based on dPCR indicated that the RM was homogeneous and stable for 24 months at -80 °C. The RM was used to evaluate inter-laboratory reproducibility in eight different laboratories, demonstrating that participating laboratories could consistently produce copy concentrations of b3a2 and ABL1-ref, as well as the BCR-ABL1/ABL1 ratio (CV < 2.0%). This work suggests that the RM can be employed in establishing metrological traceability for detecting mutations in the BCR-ABL1 fusion gene, as well as in quality control for testing laboratories.

3.
Anal Bioanal Chem ; 416(18): 4123-4130, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782781

RESUMEN

Detection of specific gene mutations in cell-free DNA (cfDNA) serves as a valuable cancer biomarker and is increasingly being explored as an appealing alternative to tissue-based methods. However, the lack of available reference materials poses challenges in accurately evaluating the performance of different assays. In this study, we present the development of a comprehensive reference material panel for cfDNA detection, encompassing nine hotspot mutations in KRAS/BRAF/EGFR/PIK3CA at three variant allele frequencies (VAFs), ranging from 0.33 to 23.9%. To mimic cfDNA, these reference materials were generated by enzymatically digesting cell-line DNA into approximately 154-bp to 173-bp fragments using a laboratory-developed reaction system. The VAFs for each variation were precisely determined through validated digital PCR assays with high accuracy. Furthermore, the reliability and applicability of this panel were confirmed through two independent NGS assays, yielding concordant results. Collectively, our findings suggest that this novel reference material panel holds great potential for validation, evaluation, and quality control processes associated with liquid biopsy assays.


Asunto(s)
Ácidos Nucleicos Libres de Células , Proteínas Proto-Oncogénicas B-raf , Estándares de Referencia , Humanos , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/análisis , Ácidos Nucleicos Libres de Células/sangre , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Reproducibilidad de los Resultados , Fosfatidilinositol 3-Quinasa Clase I/genética , Receptores ErbB/genética , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Biopsia Líquida/métodos , Biopsia Líquida/normas , Línea Celular Tumoral , Frecuencia de los Genes
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38557674

RESUMEN

Quality control in quantitative proteomics is a persistent challenge, particularly in identifying and managing outliers. Unsupervised learning models, which rely on data structure rather than predefined labels, offer potential solutions. However, without clear labels, their effectiveness might be compromised. Single models are susceptible to the randomness of parameters and initialization, which can result in a high rate of false positives. Ensemble models, on the other hand, have shown capabilities in effectively mitigating the impacts of such randomness and assisting in accurately detecting true outliers. Therefore, we introduced SEAOP, a Python toolbox that utilizes an ensemble mechanism by integrating multi-round data management and a statistics-based decision pipeline with multiple models. Specifically, SEAOP uses multi-round resampling to create diverse sub-data spaces and employs outlier detection methods to identify candidate outliers in each space. Candidates are then aggregated as confirmed outliers via a chi-square test, adhering to a 95% confidence level, to ensure the precision of the unsupervised approaches. Additionally, SEAOP introduces a visualization strategy, specifically designed to intuitively and effectively display the distribution of both outlier and non-outlier samples. Optimal hyperparameter models of SEAOP for outlier detection were identified by using a gradient-simulated standard dataset and Mann-Kendall trend test. The performance of the SEAOP toolbox was evaluated using three experimental datasets, confirming its reliability and accuracy in handling quantitative proteomics.


Asunto(s)
Manejo de Datos , Proteómica , Reproducibilidad de los Resultados , Control de Calidad , Interpretación Estadística de Datos
5.
Adv Sci (Weinh) ; 11(21): e2309557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38516754

RESUMEN

Digital PCR (dPCR) holds immense potential for precisely detecting nucleic acid markers essential for personalized medicine. However, its broader application is hindered by high consumable costs, complex procedures, and restricted multiplexing capabilities. To address these challenges, an all-in-one dPCR system is introduced that eliminates the need for microfabricated chips, offering fully automated operations and enhanced multiplexing capabilities. Using this innovative oscillation-induced droplet generation technique, OsciDrop, this system supports a comprehensive dPCR workflow, including precise liquid handling, pipette-based droplet printing, in situ thermocycling, multicolor fluorescence imaging, and machine learning-driven analysis. The system's reliability is demonstrated by quantifying reference materials and evaluating HER2 copy number variation in breast cancer. Its multiplexing capability is showcased with a quadruplex dPCR assay that detects key EGFR mutations, including 19Del, L858R, and T790M in lung cancer. Moreover, the digital stepwise melting analysis (dSMA) technique is introduced, enabling high-multiplex profiling of seven major EGFR variants spanning 35 subtypes. This innovative dPCR system presents a cost-effective and versatile alternative, overcoming existing limitations and paving the way for transformative advances in precision diagnostics.


Asunto(s)
Neoplasias de la Mama , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa/métodos , Patología Molecular/métodos , Receptores ErbB/genética , Variaciones en el Número de Copia de ADN/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Receptor ErbB-2/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mutación , Femenino
6.
Anal Bioanal Chem ; 416(16): 3645-3663, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38507042

RESUMEN

Metrology is the science of measurement and its applications, whereas biometrology is the science of biological measurement and its applications. Biometrology aims to achieve accuracy and consistency of biological measurements by focusing on the development of metrological traceability, biological reference measurement procedures, and reference materials. Irreproducibility of biological and multi-omics research results from different laboratories, platforms, and analysis methods is hampering the translation of research into clinical uses and can often be attributed to the lack of biologists' attention to the general principles of metrology. In this paper, the progresses of biometrology including metrology on nucleic acid, protein, and cell measurements and its impacts on the improvement of reliability and comparability in biological research are reviewed. Challenges in obtaining more reliable biological and multi-omics measurements due to the lack of primary reference measurement procedures and new standards for biological reference materials faced by biometrology are discussed. In the future, in addition to establishing reliable reference measurement procedures, developing reference materials from single or multiple parameters to multi-omics scale should be emphasized. Thinking in way of biometrology is warranted for facilitating the translation of high-throughput omics research into clinical practices.


Asunto(s)
Proteómica , Humanos , Reproducibilidad de los Resultados , Proteómica/métodos , Estándares de Referencia , Animales , Genómica/métodos , Multiómica
7.
Anal Methods ; 16(8): 1244-1251, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38319302

RESUMEN

Stem cell preparations, as a new type of biotherapeutic product, should be subject to strict quality control in terms of cell safety. The testing of stem cell donors and blood products used in stem cell cultures, including but not limited to Treponema pallidum, is needed to reduce the risk of transmission of infectious diseases by stem cell medical products. In this study, a reference measurement procedure (RMP) was established based on digital PCR (dPCR). A homogeneous reference material (RM) of TP containing the tpp47 gene has been developed and characterized. Two dPCR assays (A and B) show ideal linearity within five orders of magnitude. The limit of quantification (LoQ) for both assays is 57 copies/reaction; the limits of detection (LoD) are 9.69 and 9.59 copies/reaction, respectively. The quantitative results of the established duplex dPCR assay are in good agreement. The RM of TP containing the tpp47 gene has been developed and characterized. The reference value with its expanded uncertainty is (2.21 ± 0.22) × 106 copies per µL determined by the established dPCR RMP. The developed dPCR was validated by applying a simulated stem cell matrix, and no impact was observed on the accuracy of dPCR. By providing an accurate reference value for the absolute copy number of the target gene, the developed RM can be used to improve the reliability of TP testing in the production of stem cell preparations and clinical diagnostics.


Asunto(s)
Treponema pallidum , Treponema pallidum/genética , Reacción en Cadena de la Polimerasa/métodos , Reproducibilidad de los Resultados , Límite de Detección , Valores de Referencia
8.
Genome Biol ; 25(1): 34, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38268000

RESUMEN

BACKGROUND: Various laboratory-developed metabolomic methods lead to big challenges in inter-laboratory comparability and effective integration of diverse datasets. RESULTS: As part of the Quartet Project, we establish a publicly available suite of four metabolite reference materials derived from B lymphoblastoid cell lines from a family of parents and monozygotic twin daughters. We generate comprehensive LC-MS-based metabolomic data from the Quartet reference materials using targeted and untargeted strategies in different laboratories. The Quartet multi-sample-based signal-to-noise ratio enables objective assessment of the reliability of intra-batch and cross-batch metabolomics profiling in detecting intrinsic biological differences among the four groups of samples. Significant variations in the reliability of the metabolomics profiling are identified across laboratories. Importantly, ratio-based metabolomics profiling, by scaling the absolute values of a study sample relative to those of a common reference sample, enables cross-laboratory quantitative data integration. Thus, we construct the ratio-based high-confidence reference datasets between two reference samples, providing "ground truth" for inter-laboratory accuracy assessment, which enables objective evaluation of quantitative metabolomics profiling using various instruments and protocols. CONCLUSIONS: Our study provides the community with rich resources and best practices for inter-laboratory proficiency tests and data integration, ensuring reliability of large-scale and longitudinal metabolomic studies.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Metabolómica , Humanos , Reproducibilidad de los Resultados , Línea Celular , Gemelos Monocigóticos
9.
Genome Biol ; 24(1): 277, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049885

RESUMEN

BACKGROUND: Recent state-of-the-art sequencing technologies enable the investigation of challenging regions in the human genome and expand the scope of variant benchmarking datasets. Herein, we sequence a Chinese Quartet, comprising two monozygotic twin daughters and their biological parents, using four short and long sequencing platforms (Illumina, BGI, PacBio, and Oxford Nanopore Technology). RESULTS: The long reads from the monozygotic twin daughters are phased into paternal and maternal haplotypes using the parent-child genetic map and for each haplotype. We also use long reads to generate haplotype-resolved whole-genome assemblies with completeness and continuity exceeding that of GRCh38. Using this Quartet, we comprehensively catalogue the human variant landscape, generating a dataset of 3,962,453 SNVs, 886,648 indels (< 50 bp), 9726 large deletions (≥ 50 bp), 15,600 large insertions (≥ 50 bp), 40 inversions, 31 complex structural variants, and 68 de novo mutations which are shared between the monozygotic twin daughters. Variants underrepresented in previous benchmarks owing to their complexity-including those located at long repeat regions, complex structural variants, and de novo mutations-are systematically examined in this study. CONCLUSIONS: In summary, this study provides high-quality haplotype-resolved assemblies and a comprehensive set of benchmarking resources for two Chinese monozygotic twin samples which, relative to existing benchmarks, offers expanded genomic coverage and insight into complex variant categories.


Asunto(s)
Benchmarking , Pueblos del Este de Asia , Gemelos Monocigóticos , Humanos , Pueblos del Este de Asia/genética , Genómica , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Gemelos Monocigóticos/genética , Estudios en Gemelos como Asunto
10.
Genome Biol ; 24(1): 270, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012772

RESUMEN

BACKGROUND: Genomic DNA reference materials are widely recognized as essential for ensuring data quality in omics research. However, relying solely on reference datasets to evaluate the accuracy of variant calling results is incomplete, as they are limited to benchmark regions. Therefore, it is important to develop DNA reference materials that enable the assessment of variant detection performance across the entire genome. RESULTS: We established a DNA reference material suite from four immortalized cell lines derived from a family of parents and monozygotic twins. Comprehensive reference datasets of 4.2 million small variants and 15,000 structural variants were integrated and certified for evaluating the reliability of germline variant calls inside the benchmark regions. Importantly, the genetic built-in-truth of the Quartet family design enables estimation of the precision of variant calls outside the benchmark regions. Using the Quartet reference materials along with study samples, batch effects are objectively monitored and alleviated by training a machine learning model with the Quartet reference datasets to remove potential artifact calls. Moreover, the matched RNA and protein reference materials and datasets from the Quartet project enables cross-omics validation of variant calls from multiomics data. CONCLUSIONS: The Quartet DNA reference materials and reference datasets provide a unique resource for objectively assessing the quality of germline variant calls throughout the whole-genome regions and improving the reliability of large-scale genomic profiling.


Asunto(s)
Benchmarking , Genoma Humano , Humanos , Reproducibilidad de los Resultados , Polimorfismo de Nucleótido Simple , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
12.
Anal Chem ; 95(41): 15394-15399, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37787984

RESUMEN

In this study, we designed a highly integrated microfluidic chip for nucleic acid extraction, amplification, and detection. Magnetic beads, which are used to capture nucleic acids on the chip, are trapped in the microwell arrays in a one-well-one-bead manner after local surface modification of the inner faces of the microwells. On-chip liquid introduction, delivery, and mixing are all carried out manually with one syringe and no other equipment. A hand-held device with precise temperature control and high-quality imaging is developed, which is only 2.3 cubic decimeters in volume and 1.2 kg in weight. Via the use of the Internet for wireless communication, the experiment and data analysis after inserting the chip into the device can be conducted by a smartphone anywhere there is an Internet connection. We carried out reverse transcription loop-mediated isothermal amplification (RT-LAMP) on the chip with the hand-held device. SARS-CoV-2 pseudoviruses are extracted, reverse transcribed, amplified, and detected on the chip with the hand-held device with satisfactory results. Thus, a highly integrated, easy-to-operate, and rapid nucleic acid detection microfluidic chip with a hand-held smartphone-controlled device is proposed, and this new platform for nucleic acid detection shows great potential for mobile point-of-care testing (POCT).


Asunto(s)
Microfluídica , Ácidos Nucleicos , Teléfono Inteligente , Ácidos Nucleicos/análisis , Pruebas en el Punto de Atención , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Amplificación de Ácido Nucleico/métodos
13.
Genome Biol ; 24(1): 201, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37674217

RESUMEN

BACKGROUND: Batch effects are notoriously common technical variations in multiomics data and may result in misleading outcomes if uncorrected or over-corrected. A plethora of batch-effect correction algorithms are proposed to facilitate data integration. However, their respective advantages and limitations are not adequately assessed in terms of omics types, the performance metrics, and the application scenarios. RESULTS: As part of the Quartet Project for quality control and data integration of multiomics profiling, we comprehensively assess the performance of seven batch effect correction algorithms based on different performance metrics of clinical relevance, i.e., the accuracy of identifying differentially expressed features, the robustness of predictive models, and the ability of accurately clustering cross-batch samples into their own donors. The ratio-based method, i.e., by scaling absolute feature values of study samples relative to those of concurrently profiled reference material(s), is found to be much more effective and broadly applicable than others, especially when batch effects are completely confounded with biological factors of study interests. We further provide practical guidelines for implementing the ratio based approach in increasingly large-scale multiomics studies. CONCLUSIONS: Multiomics measurements are prone to batch effects, which can be effectively corrected using ratio-based scaling of the multiomics data. Our study lays the foundation for eliminating batch effects at a ratio scale.


Asunto(s)
Algoritmos , Multiómica , Composición de Base , Benchmarking , Relevancia Clínica
14.
Nat Biotechnol ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679545

RESUMEN

Certified RNA reference materials are indispensable for assessing the reliability of RNA sequencing to detect intrinsically small biological differences in clinical settings, such as molecular subtyping of diseases. As part of the Quartet Project for quality control and data integration of multi-omics profiling, we established four RNA reference materials derived from immortalized B-lymphoblastoid cell lines from four members of a monozygotic twin family. Additionally, we constructed ratio-based transcriptome-wide reference datasets between two samples, providing cross-platform and cross-laboratory 'ground truth'. Investigation of the intrinsically subtle biological differences among the Quartet samples enables sensitive assessment of cross-batch integration of transcriptomic measurements at the ratio level. The Quartet RNA reference materials, combined with the ratio-based reference datasets, can serve as unique resources for assessing and improving the quality of transcriptomic data in clinical and biological settings.

15.
Nat Biotechnol ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679543

RESUMEN

Characterization and integration of the genome, epigenome, transcriptome, proteome and metabolome of different datasets is difficult owing to a lack of ground truth. Here we develop and characterize suites of publicly available multi-omics reference materials of matched DNA, RNA, protein and metabolites derived from immortalized cell lines from a family quartet of parents and monozygotic twin daughters. These references provide built-in truth defined by relationships among the family members and the information flow from DNA to RNA to protein. We demonstrate how using a ratio-based profiling approach that scales the absolute feature values of a study sample relative to those of a concurrently measured common reference sample produces reproducible and comparable data suitable for integration across batches, labs, platforms and omics types. Our study identifies reference-free 'absolute' feature quantification as the root cause of irreproducibility in multi-omics measurement and data integration and establishes the advantages of ratio-based multi-omics profiling with common reference materials.

16.
Foodborne Pathog Dis ; 20(10): 453-459, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37590500

RESUMEN

Coinfection with human adenovirus (HAdV) and SARS-CoV-2 has been associated with acute hepatitis in children with unknown etiology. Similar cases have been reported in many countries, and HAdV 40 and HAdV 41 have been identified. The quantification method is established based on digital PCR (dPCR) for HAdV 40/41, which is more convenient for low-concentration virus detection. The limit of detections of HAdV 40/41 dPCR were 4 and 5 copies/µL. Pseudovirus reference material (RM) that contains the highly conserved HEXON gene was developed and quantified with the dPCR method. The assigned values with expanded uncertainty were (1.43 ± 0.35) × 103 copies/µL for HAdV 40 RM and (1.21 ± 0.28) × 103 copies/µL for HAdV 41 RM. The values could be reproduced on multiple platforms. The dPCR method and pseudovirus RMs contribute to the improved accuracy of HAdV 40/41 detection, which is crucial for clinical diagnosis.

17.
Anal Bioanal Chem ; 415(23): 5745-5753, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37486370

RESUMEN

Determining the quantity of active virus is the most important basis to judge the risk of virus infection, which usually relies on the virus median tissue culture infectious dose (TCID50) assay performed in a biosafety level 3 laboratory within 5-7 days. We have developed a culture-free method for rapid and accurate quantification of active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by targeting subgenomic RNA (sgRNA) based on reverse transcription digital PCR (RT-dPCR). The dynamic range of quantitative assays for sgRNA-N and sgRNA-E by RT-dPCR was investigated, and the result showed that the limits of detection (LoD) and quantification (LoQ) were 2 copies/reaction and 10 copies/reaction, respectively. The delta strain (NMDC60042793) of SARS-CoV-2 was cultured at an average titer of 106.13 TCID50/mL and used to evaluate the developed quantification method. Copy number concentrations of the cultured SARS-CoV-2 sgRNA and genomic RNA (gRNA) gave excellent linearity (R2 = 0.9999) with SARS-CoV-2 titers in the range from 500 to 105 TCID50/mL. Validation of 63 positive clinical samples further proves that the quantification of sgRNA-N by RT-dPCR is more sensitive for active virus quantitative detection. It is notable that we can infer the active virus titer through quantification of SARS-CoV-2 sgRNA based on the linear relationship in a biosafety level 2 laboratory within 3 h. It can be used to timely and effectively identify infectious patients and reduce unnecessary isolation especially when a large number of COVID-19 infected people impose a burden on medical resources.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , ARN Subgenómico , Prueba de COVID-19 , ARN Viral/genética , ARN Viral/análisis
18.
Anal Bioanal Chem ; 415(16): 3131-3135, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37160423

RESUMEN

Nucleic acid testing is a powerful tool for the detection of various pathogens. Respiratory syncytial virus (RSV) is a major cause of acute respiratory infection, especially in young children and infants. To improve the confidence and reliability of nucleic acid testing results for RSV, reference materials (RMs) of both type A and B of RSV were developed by the National Institute of Metrology, China, code numbers NIM-RM 4057 and 4058. The reference material was composed of in vitro transcribed RNA containing the nucleocapsid (N) gene, matrix (M) gene, and partial polymerase (L) gene of RSV. A duplex reverse transcription digital PCR method was established with limit of blank (LoB), limit of detection (LoD) and limit of quantification (LoQ) of 2, 5, and 23 copies per reaction for RSV-A and 4, 8, and 20 copies per reaction for RSV-B. The certified value and expanded uncertainty (U, k = 2) of the two RMs were determined to be (6.1 ± 1.4) × 104 copies/µL for RSV-A and (5.3 ± 1.2) × 104 copies/µL for RSV-B. The developed RMs can be used as standards to evaluate the performance of RSV detection assays.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Lactante , Niño , Humanos , Preescolar , Virus Sincitial Respiratorio Humano/genética , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa , ARN Viral/genética , ARN Viral/análisis
19.
Talanta ; 258: 124462, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36963149

RESUMEN

More than forty antigen testing kits have been approved to response the prevalence of SARS-CoV-2 and its variant strains. However, the approved antigen testing kits are not capable of quantitative detection. Here, we successfully developed a lateral flow immunoassay based on colloidal gold nanoparticles (CGNP-based LFIA) for nucleocapsid (N) protein of SARS-CoV-2 quantitative detection. Delta strain (NMDC60042793) of SARS-CoV-2 have been cultured and analyzed by our developed digital PCR and LFIA methods to explore the relationship between N protein amount and N gene level. It indicated that the linear relationship (y = 47 ×) between N protein molecule number and N gene copy number exhibited very well (R2 = 0.995), the virus titers and N protein amount can be roughly estimated according to nucleic acid testing. Additionally, detection limits (LODs) of nine approved antigen testing kits also have been evaluated according to the Guidelines for the registration review of 2019-nCoV antigen testing reagents. Only three antigen testing kits had LODs as stated in the instructions, the LODs of Kits have been converted into the N gene and N protein levels, according to the established relationships among virus titer vers. N gene and antigen. Results demonstrated that the sensitivity of nucleic acid testing is at least 1835 times higher than that of antigen testing. We expect that the relationship investigation and testing kits evaluation have the important directive significance to precise epidemic prevention.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Oro , Proteínas de la Nucleocápside/genética , Sensibilidad y Especificidad
20.
Anal Bioanal Chem ; 415(7): 1333-1337, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680591

RESUMEN

Human monkeypox has attracted attention recently. Monkeypox virus (MPXV) keeps evolving as it spreading around the world rapidly, which may threaten the health of more and more people. Here, we have developed a high order reference method based on digital PCR (dPCR) for MPXV detection, of which the limits of quantification (LoQ) and detection (LoD) are 38 and 6 copies/reaction, respectively. Pseudovirus reference materials (RM) containing the conserved F3L gene has been developed, and the homogeneity assessment showed that the RM was homogeneous. The reference value with its expanded uncertainty determined by the established dPCR is (2.74 ± 0.46) × 103 copies/µL. Six different MPXV test kits were accessed by the RM. Four out of six test kits cannot reach their claimed LoDs. The poor analytical sensitivity might cause false-negative results, which lead to incorrect diagnosis and treatment. The establishment of a high order reference method of dPCR and pseudovirus RM is very useful for improving the accuracy and reliability of MPXV detection.


Asunto(s)
Mpox , Humanos , Mpox/diagnóstico , Monkeypox virus/genética , Reproducibilidad de los Resultados , ADN Viral/análisis , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA