Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Bioorg Med Chem ; 110: 117825, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38954918

RESUMEN

To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.

2.
RSC Adv ; 14(25): 17461-17466, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38818366

RESUMEN

GalNAc-conjugated siRNA has shown remarkable potential in liver-targeted delivery in recent years. In general, tetrahydroxymethylmethane or other branching clusters constitute the basis of GalNAc's structure, which yields trivalent or tetravalent ligands. A novel diamine-scaffold GalNAc conjugate was synthesized and evaluated for its efficiency in siRNA administration. It exhibits comparable siRNA delivery effectiveness to a GalNAc NAG37 phase II clinical drug candidate targeting ANGPTL3. In addition, it exhibits more powerful silencing activity when connected to the 3'-end of the sense strand with an additional PS-linkage instead of a PO linkage between the ligand and the oligomer compared to a GalNAc L96 standard targeting TTR. Taken together, the incorporation of a diamine-scaffold into the GalNAc conjugate structure has potential in the field of gene therapy.

3.
Toxicol Lett ; 396: 19-27, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642674

RESUMEN

Ricin toxin (RT) is highly cytotoxic and can release a considerable amount of pro-inflammatory factors due to depurination, causing excessive inflammation that may aggravate the harm to the body. Pyroptosis, a type of gasdermin-mediated cell death, is a contributor to the exacerbation of inflammation. Accumulating evidence indicate that pyroptosis plays a significant role in the pathogen infection and tissue injury, suggesting a potential correlation between pyroptosis and RT-induced inflammation. Here, we aim to demonstrate this correlation and explore its molecular mechanisms. Results showed that RT triggers mouse alveolar macrophage MH-S cells pyroptosis by activating caspase-3 and cleaving Gasgermin E (GSDME). In contrast, inhibition of caspase-3 with Z-DEVD-FMK (inhibitor of caspase-3) or knockdown of GSDME attenuates this process, suggesting the essential role of caspase-3/GSDME-mediated pyroptosis in contributing to RT-induced inflammation. Collectively, our study enhances our understanding of a novel mechanism of ricin cytotoxicity, which may emerge as a potential target in immunotherapy to control the RT-induced inflammation.


Asunto(s)
Caspasa 3 , Inflamación , Piroptosis , Ricina , Piroptosis/efectos de los fármacos , Ricina/toxicidad , Animales , Ratones , Caspasa 3/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Línea Celular , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Gasderminas
4.
J Ethnopharmacol ; 330: 118195, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38641080

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY: This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS: SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS: Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION: Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias Colorrectales , Flavonoides , Glycyrrhiza , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Masculino , Ratones , Regulación Alostérica/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Flavonoides/química , Glycyrrhiza/química , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Front Vet Sci ; 11: 1367066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659458

RESUMEN

Nocardia seriolae is the primary pathogen causing nocardiosis in various fish species, leads to significant economic losses in the aquaculture industry. In this study, 10 bacterial strains isolated from Micropterus salmoides and Channa argus infected with nocardiosis, were identified as N. seriolae by physiological and biochemical identification, as well as 16S rDNA sequencing. Moreover, the key virulence-related genes such as ESX-1, T7SS-2, T7SS-3, EspG1, sodC, sod2 and ESAT6 were all positive, and showing high homology among different strains. Pathogenicity testing revealed mortality rates ranging from 70 to 100%, accompanied by the presence of white nodules in the viscera of deceased fish. The drug sensitivity test demonstrated that LY21811, the most lethal strain, exhibited high sensitivity to nine types of antibiotics, including azithromycin, doxycycline, florfenicol and compound sulfamethoxazole, yet showed complete resistance to ß-lactam antibiotics. Additionally, the tannic acid also demonstrated potent inhibitory effects against LY21811, with a minimum inhibitory concentration of 0.0625 mg/mL. These results showed that N. seriolae originated from M. salmoides and C. argus in Zhejiang Province were highly conserved, demonstrating a high homogeneity in genetic characteristics, pathogenicity and antimicrobial susceptibilities. These results provide a foundation for further research on the pathogenic characteristics and disease prevention of N. seriolae infections.

6.
RSC Med Chem ; 15(4): 1307-1319, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665828

RESUMEN

Excitotoxicity due to excessive activation of NMDARs is one of the main mechanisms of neuronal death during ischemic stroke. Previous studies have suggested that activation of either synaptic or extrasynaptic GluN2B-containing NMDARs results in neuronal damage, whereas activation of GluN2A-containing NMDARs promotes neuronal survival against ischemic insults. This study applied a systematic in silico, in vitro, and in vivo approach to the discovery of novel and potential GluN1/2A NMDAR positive allosteric modulators (PAMs). Ten compounds were obtained and identified as potential GluN1/2A PAMs by structure-based virtual screening and calcium imaging. The neuroprotective activity of the candidate compounds was demonstrated in vitro. Subsequently, compound 15 (aegeline) was tested further in the model of transient middle cerebral artery occlusion (tMCAO) in vivo, which significantly decreased cerebral infarction. The mechanism by which aegeline exerts its effect on allosteric modulation was revealed using molecular dynamics simulations. Finally, we found that the neuroprotective effect of aegeline was significantly correlated with the enhanced phosphorylation of cAMP response element-binding protein (CREB). Our study discovered the neuroprotective effect of aegeline as a novel PAM targeting GluN1/2A NMDAR, which provides a potential opportunity for the development of therapeutic agents for ischemic stroke.

7.
Toxicol Appl Pharmacol ; 485: 116890, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492674

RESUMEN

Ricin (ricin toxin, RT) has the potential to cause damage to multiple organs and systems. Currently, there are no existing antidotes, vaccinations, or effective therapies to prevent or treat RT intoxication. Apart from halting protein synthesis, RT also induces oxidative stress, inflammation and autophagy. To explore the mechanisms of RT-induced inflammatory injury and specific targets of prevention and treatment for RT poisoning, we characterized the role of cross-talk between autophagy and NLRP3 inflammasome in RT-induced damage and elucidated the underlying mechanisms. We showed that RT-induced inflammation was attributed to activation of the TLR4/MyD88/NLRP3 signaling and ROS production, evidenced by increased ASC speck formation and attenuated TXNIP/TRX-1 interaction, as well as pre-treatment with MCC950, MyD88 knockdown and NAC significantly reduced IL-1ß, IL-6 and TNF-α mRNA expression. In addition, autophagy is also enhanced in RT-triggered MLE-12 cells. RT elevated the levels of ATG5, p62 and Beclin1 protein, provoked the accumulation of LC3 puncta detected by immunofluorescence staining. Treatment with rapamycin (Rapa) reversed the RT-caused TLR4/MyD88/NLRP3 signaling activation, ASC specks formation as well as the levels of IL-1ß, IL-6 and TNF-α mRNA. In conclusion, RT promoted NLRP3 inflammasome activation and autophgay. Inflammation induced by RT was attenuated by autophagy activation, which suppressed the NLRP3 inflammasome. These findings suggest Rapa as a potential therapeutic drug for the treatment of RT-induced inflammation-related diseases.


Asunto(s)
Autofagia , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ricina , Transducción de Señal , Autofagia/efectos de los fármacos , Animales , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ricina/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Inflamación/inducido químicamente , Línea Celular , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
8.
Theranostics ; 14(2): 681-698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169561

RESUMEN

Background: Radiation resistance is the main limitation of the application of radiotherapy. Ionizing radiation (IR) kills cancer cells mainly by causing DNA damage, particularly double-strand breaks (DSBs). Radioresistant cancer cells have developed the robust capability of DNA damage repair to survive IR. Nuclear factor erythroid 2-related factor 2 (NRF2) has been correlated with radiation resistance. We previously reported a novel function of NRF2 as an ATR activator in response to DSBs. However, little is known about the mechanism that how NRF2 regulates DNA damage repair and radiation resistance. Methods: The TCGA database and tissue microarray were used to analyze the correlation between NRF2 and the prognosis of lung cancer patients. The radioresistant lung cancer cells were constructed, and the role of NRF2 in radiation resistance was explored by in vivo and in vitro experiments. Immunoprecipitation, immunofluorescence and extraction of chromatin fractions were used to explore the underlying mechanisms. Results: In this study, the TCGA database and clinical lung cancer samples showed that high expression of NRF2 was associated with poor prognosis in lung cancer patients. We established radioresistant lung cancer cells expressing NRF2 at high levels, which showed increased antioxidant and DNA repair abilities. In addition, we found that NRF2 can be involved in the DNA damage response independently of its antioxidant function. Mechanistically, we demonstrated that NRF2 promoted the phosphorylation of replication protein A 32 (RPA32), and DNA topoisomerase 2-binding protein 1 (TOPBP1) was recruited to DSB sites in an NRF2-dependent manner. Conclusion: This study explored the novel role of NRF2 in promoting radiation resistance by cooperating with RPA32 and TOPBP1 to activate the ATR-CHK1 signaling pathway. In addition, the findings of this study not only provide novel insights into the molecular mechanisms underlying the radiation resistance of lung cancer cells but also validate NRF2 as a potential target for radiotherapy.


Asunto(s)
Proteínas Portadoras , Neoplasias Pulmonares , Humanos , Antioxidantes/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Transducción de Señal
9.
Eur J Pharmacol ; 966: 176333, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38278466

RESUMEN

The µ-opioid receptor-biased agonist theory holds that Gio protein signaling mediates the analgesic effect of opioids and the related side effects via the ß-arrestin2 signaling pathway. A series of µ-opioid-biased agonists have been developed in accordance with this theory, and the FDA has approved TRV130 (as a representative of biased agonists) for marketing. However, several reports have raised the issue of opioid side effects associated with the use of agonists. In this study, five permeable peptides were designed to emulate 11 S/T phosphorylation sites at the µ-opioid receptor (MOR) carboxyl-terminal. In vitro experiments were performed to detect the activation level of G proteins from the cAMP inhibition assay and the ß-arrestin2 recruitment by the BRET assay. Designed peptides might effectively interfere with the activation of the Gio and ß-arrestin2 pathways when combined with morphine. The resulting morphine-induced tolerance, respiratory inhibition, and constipation in mice showed that the ß-arrestin2 pathway was responsible for morphine tolerance while the Gio signaling pathway was involved with respiratory depression and constipation and that these side effects were significantly related to phosphorylation sites S363 and T370. This study may provide new directions for the development of safer and more effective opioid analgesics, and the designed peptides may be an effective tool for exploring the mechanism by which µ-opioid receptors function, with the potential of reducing the side effects that are associated with clinical opioid treatment.


Asunto(s)
Analgésicos Opioides , Morfina , Ratones , Animales , Morfina/efectos adversos , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal , Estreñimiento/inducido químicamente , Péptidos/metabolismo , Arrestina beta 2/metabolismo
10.
Cell Death Discov ; 9(1): 426, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007566

RESUMEN

Ionizing radiation (IR) causes a wide variety of DNA lesions, of which DNA double-stranded breaks (DSBs) are the most deleterious. Homologous recombination (HR) is a crucial route responsible for repairing DSBs. RecQ-mediated genome instability protein 1 (RMI1) is a member of an evolutionarily conserved Bloom syndrome complex, which prevents and resolves aberrant recombination products during HR, thereby promoting genome stability. However, little is known about the role of RMI1 in regulating the cellular response to IR. This study aimed to understand the cellular functions and molecular mechanisms by which RMI1 maintains genomic stability after IR exposure. Here, we showed IR upregulated the RMI1 protein level and induced RMI1 relocation to the DNA damage sites. We also demonstrated that the loss of RMI1 in cells resulted in enhanced levels of DNA damage, sustained cell cycle arrest, and impaired HR repair after IR, leading to reduced cell viability and elevated genome instability. Taken together, our results highlighted the direct roles of RMI1 in response to DNA damage induced by IR and implied that RMI1 might be a new genome safeguard molecule to radiation-induced damage.

12.
Vector Borne Zoonotic Dis ; 23(12): 619-633, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37625029

RESUMEN

Background: Orientia tsutsugamushi is a zoonotic intracellular pathogen that requires parasitism in eukaryotic cells to reproduce. In recent years, tsutsugamushi disease reported in many places nationwide has crossed the Yangtze River, continuously, spreading to the North China. Now this phenomenon has aroused people's attention. Materials and Methods: In this study, meta-analysis was used to analyze the infection of rodents (vectors) in China, to clarify the transmission rule of O. tsutsugamushi. Results: This study included literature from six databases (PubMed, Web of Science, Science Direct, Wanfang, CNKI, and VIP). A total of 55 articles were included in the study from 610 retrieved articles. The total infection rate of O. tsutsugamushi in rodents was 5.5% (1206/20,620, 95% confidence interval [CI]: 0.0553-0.0617). The prevalence of O. tsutsugamushi in rodents before 2013 (7.73%, 95% CI: 4.11-12.37) was higher than after 2013 (2.11%, 95% CI: 0.64-4.41). O. tsutsugamushi spread among a variety of rodents, among which Rattus losea (13.3%, 95% CI: 4.33-26.26), Rattus tanezumi (5.69%, 95% CI: 1.37-12.72), and Apodemus agrarius (5.32%, 95% CI: 2.26-9.58) infection rate was higher. Kawasaki (8.32%, 95% CI: 1.42-20.17), Karp (7.36%, 95% CI: 2.62-14.22), Kato (2.54%, 95% CI: 0.08-8.28), and Gilliam (2.13%, 95% CI: 0.42-5.09) were the main prevalent genotypes in China. The prevalence of O. tsutsugamushi in rodents was seasonal, increasing gradually in summer (2.39%, 95% CI: 0.46-5.77), peaking in autumn (4.59%, 95% CI: 1.15-10.16), and then declining. The positive rate of immunofluorescence assay (25.07%, 95% CI: 8.44-46.88) was the highest among the detection methods, and it was statistically significant (p < 0.05). Based on the subgroup of geographical factors and climatic factors, the probability of O. tsutsugamushi infection in rodents was the highest when the temperature >19℃ (8.20%, 95% CI: 1.22-20.52), the altitude <100 millimeters (7.23%, 95% CI: 3.45-12.26), the precipitation >700 millimeters (12.22%, 95% CI: 6.45-19.50), and the humidity 60-70% (7.80%, 95% CI: 4.17-12.44). Conclusions: Studies have shown that rodents carrying O. tsutsugamushi are common. People should prevent and control rodents in life and monitor rodents carrying O. tsutsugamushi for a long time.


Asunto(s)
Orientia tsutsugamushi , Tifus por Ácaros , Trombiculidae , Animales , Humanos , Orientia tsutsugamushi/genética , Prevalencia , Tifus por Ácaros/epidemiología , Tifus por Ácaros/veterinaria , Murinae , China/epidemiología
13.
Toxicol Lett ; 383: 177-191, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392970

RESUMEN

γ-bungarotoxin (γ-BGT) is an RGD motif-containing protein, derived from the venom of Bungarus multicinctus, leading to acute death in mice. These RGD motif-containing proteins from snake venom belonging to the disintegrin family can interfere with vascular endothelial homeostasis by directly binding cell surface integrins. Targeting integrins that generate vascular endothelial dysfunction may contribute to γ-BGT poisoning, however, the underlying mechanisms have not been investigated in detail. In this study, the results showed that γ-BGT played a role in -promoting the permeability of the vascular endothelial barrier. Depending on its selective binding to integrin α5 in vascular endothelium (VE), γ-BGT initiated downstream events, including focal adhesion kinase dephosphorylation and cytoskeleton remodeling, resulting in the intercellular junction interruption. Those alternations facilitated paracellular permeability of VE and barrier dysfunction. Proteomics profiling identified that as a downstream effector of the integrin α5 / FAK signaling pathway cyclin D1 partially mediated the cellular structural changes and barrier dysfunction. Furthermore, VE-released plasminogen activator urokinase and platelet-derived growth factor D could serve as potential diagnostic biomarkers for γ-BGT-induced vascular endothelial dysfunction. Our results indicate the mechanisms through which γ-BGT as a novel disintegrin directly interacts with the VE, with consequences for barrier dysfunction.


Asunto(s)
Bungarotoxinas , Endotelio Vascular , Integrina alfa5 , Venenos de Serpiente , Animales , Ratones , Bungarotoxinas/toxicidad , Desintegrinas/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Integrina alfa5/metabolismo , Integrinas/metabolismo , Oligopéptidos , Venenos de Serpiente/toxicidad
14.
Toxicol Lett ; 383: 152-161, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390852

RESUMEN

DNA-encoded monoclonal antibodies (DMAbs) and in vivo expression of antibody therapeutics presents an innovative alternative to conventional delivery methods. Therefore, in order to prevent the lethal dose of ricin toxin (RT) and to avoid human anti-mouse antibody (HAMA) reaction, we developed the human neutralizing antibody 4-4E against RT and constructed DMAb-4-4E. The human neutralizing antibody 4-4E could neutralize RT in vitro and in vivo, while the mice in RT group all died. Using intramuscular electroporation (IM EP), antibodies were rapidly expressed in vivo within 7 days and were enriched in intestine and gastrocnemius muscle mostly. Besides, we found that DMAbs have shown a broad protective efficacy of RT poisoning prophylaxis. Driven by plasmids for IgG expression, mice were survived and the blood glucose level of mice in DMAb-IgG group returned to normal at 72 h post RT challenge, and the RT group died within 48 h. Furthermore, hindrance of protein disulfide isomerase (PDI) and accumulation of RT in endosomes were found in IgG-protected cells, revealing the possible mechanism of neutralization details. These data support the further study of RT-neutralizing monoclonal antibodies (mAbs) in the development.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Intoxicación por Plantas , Intoxicación , Ricina , Toxinas Biológicas , Animales , Ratones , Humanos , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes , Ricina/toxicidad , Inmunoglobulina G , Ratones Endogámicos BALB C , Intoxicación/prevención & control
15.
J Exp Clin Cancer Res ; 42(1): 140, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270563

RESUMEN

BACKGROUND: The transmembrane receptor Kremen2 has been reported to participate in the tumorigenesis and metastasis of gastric cancer. However, the role of Kremen2 in non-small cell lung cancer (NSCLC) and the underlying mechanism remain unclear. This study aimed to explore the biological function and regulatory mechanism of Kremen2 in NSCLC. METHODS: The correlation between Kremen2 expression and NSCLC was assessed by analyzing the public database and clinical tissue samples. Colony formation and EdU assays were performed to examine cell proliferation. Transwell and wound healing assays were used to observe cell migration ability. Tumor-bearing nude mice and metastatic tumor models were used to detect the in vivo tumorigenic and metastatic abilities of the NSCLC cells. An immunohistochemical assay was used to detect the expression of proliferation-related proteins in tissues. Western blot, immunoprecipitation and immunofluorescence were conducted to elucidate the Kremen2 regulatory mechanisms in NSCLC. RESULTS: Kremen2 was highly expressed in tumor tissues from NSCLC patients and was positively correlated with a poor patient prognosis. Knockout or knockdown of Kremen2 inhibited cell proliferation and migration ability of NSCLC cells. In vivo knockdown of Kremen2 inhibited the tumorigenicity and number of metastatic nodules of NSCLC cells in nude mice. Mechanistically, Kremen2 interacted with suppressor of cytokine signaling 3 (SOCS3) to maintain the epidermal growth factor receptor (EGFR) protein levels by preventing SOCS3-mediated ubiquitination and degradation of EGFR, which, in turn, promoted activation of the PI3K-AKT and JAK2-STAT3 signaling pathways. CONCLUSIONS: Our study identified Kremen2 as a candidate oncogene in NSCLC and may provide a potential target for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Ratones Noqueados , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
16.
Nat Chem ; 15(9): 1285-1295, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37308709

RESUMEN

The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.


Asunto(s)
Compuestos de Sulfhidrilo , Isomerismo , Bases de Datos de Proteínas
17.
Front Cell Infect Microbiol ; 13: 1155293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207187

RESUMEN

Introduction: The constantly mutating SARS-CoV-2 has been infected an increasing number of people, hence the safe and efficacious treatment are urgently needed to combat the COVID-19 pandemic. Currently, neutralizing antibodies (Nabs), targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are potentially effective therapeutics against COVID-19. As a new form of antibody, bispecific single chain antibodies (BscAbs) can be easily expressed in E. coli and exhibits broad-spectrum antiviral activity. Methods: In this study, we constructed two BscAbs 16-29, 16-3022 and three single chain variable fragments (scFv) S1-16, S2-29 and S3022 as a comparison to explore their antiviral activity against SARS-CoV-2. The affinity of the five antibodies was characterized by ELISA and SPR and the neutralizing activity of them was analyzed using pseudovirus or authentic virus neutralization assay. Bioinformatics and competitive ELISA methods were used to identify different epitopes on RBD. Results: Our results revealed the potent neutralizing activity of two BscAbs 16-29 and 16-3022 against SARS-CoV-2 original strain and Omicron variant infection. In addition, we also found that SARS-CoV RBD-targeted scFv S3022 could play a synergistic role with other SARS-CoV-2 RBD-targeted antibodies to enhance neutralizing activity in the form of a BscAb or in cocktail therapies. Discussion: This innovative approach offers a promising avenue for the development of subsequent antibody therapies against SARSCoV-2. Combining the advantages of cocktails and single-molecule strategies, BscAb therapy has the potential to be developed as an effective immunotherapeutic for clinical use to mitigate the ongoing pandemic.


Asunto(s)
COVID-19 , Anticuerpos de Cadena Única , Humanos , SARS-CoV-2/genética , Escherichia coli , Pandemias , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos de Cadena Única/genética , Anticuerpos Antivirales/uso terapéutico , Antivirales
18.
ACS Synth Biol ; 12(6): 1686-1695, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37196336

RESUMEN

Noticeable morbidity and mortality can be caused by influenza A virus in humans. Conventional live attenuated influenza vaccine (LAIV) is one of the main strategies to control the spread of influenza, but its protective efficacy is often limited by its suboptimal immunogenicity and safety. Therefore, a new type of LAIV that can overcome the shortage of existing vaccines is urgently needed. Here, we report a novel method to construct the recombinant influenza A virus (IAV) regulated by small molecules. By inserting 4-hydroxytamoxifen (4-HT)-dependent intein into the polymerase acidic (PA) protein of IAV, a series of 4-HT-dependent recombinant viruses were generated and screened. Among them, the S218 recombinant virus strain showed excellent 4-HT dependent replication characteristics both in vitro and in vivo. Further immunological evaluation indicated that the 4-HT-dependent viruses were highly attenuated in the host and could elicit robust humoral, mucosal, and cellular immunity against the challenge of homologous viruses. The attenuated strategies presented here could also be broadly applied to the development of vaccines against other pathogens.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Inteínas , Virus de la Influenza A/genética , Vacunas Atenuadas
19.
Hum Vaccin Immunother ; 19(1): 2158670, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067182

RESUMEN

Melanoma stem cells (MSCs)-based vaccine strategies have been a potent immunotherapeutic approach for melanoma treatment, which aimed at inducing specific anti-tumor immunity and targeting cancer stem-like cells. As the main cancer-fighting immune cells, CD8+T cells play an important role in vaccine-induced antitumor immunity. Here, we developed a novel MSC vaccine that induces CD8+T cells to target melanoma stem cells specifically. The MSC vaccine was prepared for our study in order to determine the effectiveness of antitumor immunity. The proportion and activity of CD8+T cells were examined in the spleen after immunization, in particular, the expression and cytotoxicity of the immune checkpoint of spleen lymphocytes were detected by flow cytometry and ELISA, moreover, tumor size and the number of lung metastasis nodules were observed and the specific killing effect of the vaccine was evaluated in immunized mice. We found that the MSC vaccine could promote DCs maturation, activate CD8+T cells, suppress the expression of CTLA-4, PD-1, and Tim-3, and increase the expression of IFN-γ and GzmB of CD8+T cells. Melanoma growth and metastasis were inhibited by the vaccine's specific targeted killing effect. The vaccines based on melanoma stem cells (MSCs) delay the progression of melanoma by inducing anti-tumor immune responses in CD8+T cells.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Pulmonares , Melanoma , Ratones , Animales , Melanoma/tratamiento farmacológico , Linfocitos T CD8-positivos , Neoplasias Pulmonares/tratamiento farmacológico , Inmunización , Células Madre , Ratones Endogámicos C57BL
20.
Opt Express ; 31(5): 8042-8048, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859922

RESUMEN

We experimentally investigate the frequency down-conversion through the four-wave mixing (FWM) process in a cold 85Rb atomic ensemble, with a diamond-level configuration. An atomic cloud with a high optical depth (OD) of 190 is prepared to achieve a high efficiency frequency conversion. Here, we convert a signal pulse field (795 nm) attenuated to a single-photon level, into a telecom light at 1529.3 nm within near C-band range and the frequency-conversion efficiency can reach up to 32%. We find that the OD is an essential factor affecting conversion efficiency and the efficiency may exceed 32% with an improvement in the OD. Moreover, we note the signal-to-noise ratio of the detected telecom field is higher than 10 while the mean signal count is larger than 0.2. Our work may be combined with quantum memories based on cold 85Rb ensemble at 795 nm and serve for long-distance quantum networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA