Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Transpl Int ; 37: 11354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119063

RESUMEN

Background: In the early postoperative stage after heart transplantation, there is a lack of predictive tools to guide postoperative management. Whether the vasoactive-inotropic score (VIS) can aid this prediction is not well illustrated. Methods: In total, 325 adult patients who underwent heart transplantation at our center between January 2015 and December 2018 were included. The maximum VIS (VISmax) within 24 h postoperatively was calculated. The Kaplan-Meier method was used for survival analysis. A logistic regression model was established to determine independent risk factors and to develop a nomogram for a composite severe adverse outcome combining early mortality and morbidity. Results: VISmax was significantly associated with extensive early outcomes such as early death, renal injury, cardiac reoperation and mechanical circulatory support in a grade-dependent manner, and also predicted 90-day and 1-year survival (p < 0.05). A VIS-based nomogram for the severe adverse outcome was developed that included VISmax, preoperative advanced heart failure treatment, hemoglobin and serum creatinine. The nomogram was well calibrated (Hosmer-Lemeshow p = 0.424) with moderate to strong discrimination (C-index = 0.745) and good clinical utility. Conclusion: VISmax is a valuable prognostic index in heart transplantation. In the early post-transplant stage, this VIS-based nomogram can easily aid intensive care clinicians in inferring recipient status and guiding postoperative management.


Asunto(s)
Trasplante de Corazón , Nomogramas , Humanos , Trasplante de Corazón/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/diagnóstico , Insuficiencia Cardíaca/cirugía , Factores de Riesgo , Cuidados Posoperatorios/métodos , Estimación de Kaplan-Meier , Anciano , Pronóstico
2.
Biomed Pharmacother ; 178: 117241, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39111082

RESUMEN

Calcific aortic valve disease (CAVD) primarily involves osteogenic differentiation in human aortic valve interstitial cells (hVICs). Schisandrol B (SolB), a natural bioactive constituent, has known therapeutic effects on inflammatory and fibrotic disorders. However, its impact on valve calcification has not been reported. We investigated the effect of SolB on osteogenic differentiation of hVICs. Transcriptome sequencing was used to analyze potential molecular pathways affected by SolB treatment. The study also included an in vivo murine model using aortic valve wire injury surgery to observe SolB's effect on valve calcification. SolB inhibited the osteogenic differentiation of hVICs, reversing the increase in calcified nodule formation and osteogenic proteins. In the murine model, SolB significantly decreased the peak velocity of the aortic valve post-injury and reduced valve fibrosis and calcification. Transcriptome sequencing identified the p53 signaling pathway as a key molecular target of SolB, demonstrating its role as a molecular glue in the mouse double minute 2 (MDM2)-p53 interaction, thereby promoting p53 ubiquitination and degradation, which further inhibited p53-related inflammatory and senescence response. These results highlighted therapeutic potential of SolB for CAVD via inhibiting p53 signaling pathway and revealed a new molecular mechanism of SolB which provided a new insight of theraputic mechanism for CAVD.

3.
Front Cardiovasc Med ; 11: 1425900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114560

RESUMEN

This case report describes a 3-month-old male infant diagnosed with severe mitral stenosis (MS) and mitral regurgitation (MR) by transthoracic echocardiography. The male infant initially underwent complex mitral valve repair surgery. However, postoperative deterioration occurred with hemodynamic instability and shock, necessitating multiple resuscitation efforts and ultimately requiring support from Extracorporeal Membrane Oxygenation (ECMO). Given the serious conditions, the cardiac team decided to perform mitral valve replacement with a fresh allograft aortic valve. Postoperatively, the patient was promptly weaned off ECMO support, and the valve demonstrated sustained functionality throughout the long-term follow-up.

4.
J Cardiovasc Dev Dis ; 11(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057607

RESUMEN

Ischemic cardiomyopathy patients with severe left ventricular dysfunction are a specific group of patients with poor surgical outcomes. There are few surgical treatment options in practice for the treatment of these patients such as heart transplantation, coronary artery bypass surgery, surgical ventricular restoration, etc. Despite multiple treatment options, there are no explicit clinical guidelines available to guide surgeons in choosing the most appropriate option and ensuring that the specific patient can benefit from the selected surgical treatment. Heart transplantation is the gold standard treatment for ischemic cardiomyopathy patients with severe left ventricular dysfunction, but it is limited to very few highly equipped centers around the world due to donor shortages, complex perioperative and surgical management, and limited technological and human resources. It is evident from some studies that heart transplant-eligible candidates can benefit from alternative surgical options such as coronary artery bypass surgery alone or combined with surgical ventricular restoration. Therefore, alternative surgical options that are used for most of the population, especially in developing and underdeveloped countries, need to be discussed to improve their outcomes. A challenge in the recent era which has yet to find a solution is to determine which heart transplant candidate can benefit from simple revascularization compared to a complex heart transplantation procedure. Myocardial viability testing was one of the most important determinants in deciding whether a patient should undergo revascularization, but its role in guiding appropriate surgical options has been challenged. This review aims to discuss the available surgical management options and their long-term outcomes for patients with ischemic cardiomyopathy, which will eventually help surgeons when choosing a surgical procedure.

5.
Eur Heart J ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976370

RESUMEN

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.

6.
ACS Appl Mater Interfaces ; 16(28): 35936-35948, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958205

RESUMEN

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.


Asunto(s)
Sulfatos de Condroitina , Animales , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Ratas , Prótesis Valvulares Cardíacas , Ingeniería de Tejidos , Válvulas Cardíacas/efectos de los fármacos , Válvulas Cardíacas/química , Ratas Sprague-Dawley , Andamios del Tejido/química , Ensayo de Materiales , Humanos , Reactivos de Enlaces Cruzados/química , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Porcinos
7.
Int J Surg ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954672

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication after cardiac surgery that significantly affects patient outcomes. Given the limited treatment options available, identifying modifiable risk factors is critical. Frailty and obesity, two heterogeneous physiological states, have significant implications for identifying and preventing AKI. Our study investigated the interplay among frailty, body composition, and AKI risk after cardiac surgery to inform patient management strategies. MATERIAL AND METHODS: This retrospective cohort study included three international cohorts. Primary analysis was conducted in adult patients who underwent cardiac surgery between 2014 and 2019 at Wuhan XX Hospital, China. We tested the generalizability of our findings with data from two independent international cohorts, the Medical Information Mart for Intensive Care IV (MIMIC-IV) and the eICU Collaborative Research Database. Frailty was assessed using a clinical lab-based frailty index (FI-LAB), while total body fat percentage (BF%) was calculated based on a formula accounting for BMI, sex, and age. Logistic regression models were used to analyze the associations between frailty, body fat, and AKI, adjusting for pertinent covariates. RESULTS: A total of 8785 patients across three international cohorts were included in the study. In the primary analysis of 3,569 patients from Wuhan XX Hospital, moderate and severe frailty were associated with an increased AKI risk after cardiac surgery. Moreover, a nonlinear relationship was observed between body fat percentage and AKI risk. When stratified by the degree of frailty, lower body fat correlated with a decreased incidence of AKI. Extended analyses using the MIMIC-IV and eICU cohorts (n=3,951 and n=1,265, respectively) validated these findings and demonstrated that a lower total BF% was associated with decreased AKI incidence. Moderation analysis revealed that the effect of frailty on AKI risk was moderated by the body fat percentage. Sensitivity analyses demonstrated results consistent with the main analyses. CONCLUSION: Higher degrees of frailty were associated with an elevated risk of AKI following cardiac surgery, and total BF% moderated this relationship. This research underscores the significance of integrating frailty and body fat assessments into routine cardiovascular care to identify high-risk patients for AKI and implement personalized interventions to improve patient outcomes.

8.
Biomed Pharmacother ; 178: 117143, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024838

RESUMEN

Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.

9.
Mol Med ; 30(1): 88, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879491

RESUMEN

BACKGROUND: Macrophages play a crucial role in the development of cardiac fibrosis (CF). Although our previous studies have shown that glycogen metabolism plays an important role in macrophage inflammatory phenotype, the role and mechanism of modifying macrophage phenotype by regulating glycogen metabolism and thereby improving CF have not been reported. METHODS: Here, we took glycogen synthetase kinase 3ß (GSK3ß) as the target and used its inhibitor NaW to enhance macrophage glycogen metabolism, transform M2 phenotype into anti-fibrotic M1 phenotype, inhibit fibroblast activation into myofibroblasts, and ultimately achieve the purpose of CF treatment. RESULTS: NaW increases the pH of macrophage lysosome through transmembrane protein 175 (TMEM175) and caused the release of Ca2+ through the lysosomal Ca2+ channel mucolipin-2 (Mcoln2). At the same time, the released Ca2+ activates TFEB, which promotes glucose uptake by M2 and further enhances glycogen metabolism. NaW transforms the M2 phenotype into the anti-fibrotic M1 phenotype, inhibits fibroblasts from activating myofibroblasts, and ultimately achieves the purpose of treating CF. CONCLUSION: Our data indicate the possibility of modifying macrophage phenotype by regulating macrophage glycogen metabolism, suggesting a potential macrophage-based immunotherapy against CF.


Asunto(s)
Fibrosis , Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Ratones , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Miofibroblastos/metabolismo , Glucógeno/metabolismo , Calcio/metabolismo , Lisosomas/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Masculino , Ratones Endogámicos C57BL
10.
J Nanobiotechnology ; 22(1): 378, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943185

RESUMEN

Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.


Asunto(s)
Válvulas Cardíacas , Hidrogeles , Ratas Sprague-Dawley , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/química , Anisotropía , Ratas , Hidrogeles/química , Materiales Biocompatibles/química , Prótesis Valvulares Cardíacas , Poliésteres/química , Células Cultivadas , Humanos , Matriz Extracelular/química , Masculino
11.
Front Immunol ; 15: 1383607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715600

RESUMEN

Background: The crucial role of inflammation in aortic aneurysm (AA) is gaining prominence, while there is still a lack of key cytokines or targets for effective clinical translation. Methods: Mendelian randomization (MR) analysis was performed to identify the causal relationship between 91 circulating inflammatory proteins and AA and between 731 immune traits and AA. Bulk RNA sequencing data was utilized to demonstrate the expression profile of the paired ligand-receptor. Gene enrichment analysis, Immune infiltration, and correlation analysis were employed to deduce the potential role of CX3CR1. We used single-cell RNA sequencing data to pinpoint the localization of CX3CL1 and CX3CR1, which was further validated by multiplex immunofluorescence staining. Cellchat analysis was utilized to infer the CX3C signaling pathway. Trajectory analysis and the Cytosig database were exploited to determine the downstream effect of CX3CL1-CX3CR1. Results: We identified 4 candidates (FGF5, CX3CL1, IL20RA, and SCF) in multiple two-sample MR analyses. Subsequent analysis of the expression profile of the paired receptor revealed the significant upregulation of CX3CR1 in AA and its positive correlation with pro-inflammatory macrophages. Two sample MR between immune cell traits and AA demonstrated the potential causality between intermediate monocytes and AA. We finally deciphered in single-cell sequencing data that CX3CL1 sent by endothelial cells (ECs) acted on CX3CR1 of intermediated monocytes, leading to its recruitment and pro-inflammatory responses. Conclusion: Our study presented a genetic insight into the pathogenetic role of CX3CL1-CX3CR1 in AA, and further deciphered the CX3C signaling pathway between ECs and intermediate monocytes.


Asunto(s)
Aneurisma de la Aorta , Receptor 1 de Quimiocinas CX3C , Quimiocina CX3CL1 , Análisis de la Aleatorización Mendeliana , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Transducción de Señal , Predisposición Genética a la Enfermedad
12.
Redox Biol ; 73: 103215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810422

RESUMEN

The prevalence of calcific aortic valve disease (CAVD) remains substantial while there is currently no medical therapy available. Forkhead box O1 (FOXO1) is known to be involved in the pathogenesis of cardiovascular diseases, including vascular calcification and atherosclerosis; however, its specific role in calcific aortic valve disease remains to be elucidated. In this study, we identified FOXO1 significantly down-regulated in the aortic valve interstitial cells (VICs) of calcified aortic valves by investigating clinical specimens and GEO database analysis. FOXO1 silencing or inhibition promoted VICs osteogenic differentiation in vitro and aortic valve calcification in Apoe-/- mice, respectively. We identified that FOXO1 facilitated the ubiquitination and degradation of RUNX2, which process was mainly mediated by SMAD-specific E3 ubiquitin ligase 2 (SMURF2). Our discoveries unveil a heretofore unacknowledged mechanism involving the FOXO1/SMURF2/RUNX2 axis in CAVD, thereby proposing the potential therapeutic utility of FOXO1 or SMURF2 as viable strategies to impede the progression of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteína Forkhead Box O1 , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Ratones , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/genética , Masculino , Osteogénesis/genética , Modelos Animales de Enfermedad , Diferenciación Celular
14.
Adv Healthc Mater ; 13(16): e2303737, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38560921

RESUMEN

Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.


Asunto(s)
Ácido Hialurónico , Ingeniería de Tejidos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Animales , Ingeniería de Tejidos/métodos , Humanos , Válvulas Cardíacas , Andamios del Tejido/química , Inmunomodulación/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Ratones , Calcinosis , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Prótesis Valvulares Cardíacas , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Adhesión Celular/efectos de los fármacos
16.
Acta Biomater ; 178: 181-195, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447808

RESUMEN

Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Endoteliales , Calcio/metabolismo , Fibrinolíticos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diferenciación Celular/fisiología , Endotelio
17.
Adv Sci (Weinh) ; 11(20): e2307319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502885

RESUMEN

The senescence of aortic valve interstitial cells (VICs) plays a critical role in the progression of calcific aortic valve disease (CAVD). However, the precise mechanisms underlying the senescence of VICs remain unclear, demanding the identification of a novel target to mitigate this process. Previous studies have highlighted the anti-aging potential of morusin. Thus, this study aimed to explore the therapeutic potential of morusin in CAVD. Cellular experiments reveal that morusin effectively suppresses cellular senescence and cause a shift toward osteogenic differentiation of VICs in vitro. Mechanistically, morusin activate the Nrf2-mediated antiaging signaling pathway by downregulating CCND1 expression and aiding Keap1 degradation through Trim 25. This activation lead to the upregulated expression of antioxidant genes, thus reducing reactive oxygen species production and thereby preventing VIC osteogenic differentiation. In vivo experiments in ApoE-/- mice on a high-fat Western diet demonstrate the positive effect of morusin in mitigating aortic valve calcification. These findings emphasize the antiaging properties of morusin and its potential as a therapeutic agent for CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Senescencia Celular , Flavonoides , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Calcinosis/metabolismo , Calcinosis/genética , Senescencia Celular/efectos de los fármacos , Ciclina D1/metabolismo , Ciclina D1/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Flavonoides/administración & dosificación
18.
Front Cardiovasc Med ; 11: 1346202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468723

RESUMEN

Objective: We sought to develop and validate a mortality prediction model for heart transplantation (HT) using nutrition-related indicators, which clinicians could use to identify patients at high risk of death after HT. Method: The model was developed for and validated in adult participants in China who received HT between 1 January 2015 and 31 December 2020. 428 subjects were enrolled in the study and randomly divided into derivation and validation cohorts at a ratio of 7:3. The likelihood-ratio test based on Akaike information was used to select indicators and develop the prediction model. The performance of models was assessed and validated by area under the curve (AUC), C-index, calibration curves, net reclassification index, and integrated discrimination improvement. Result: The mean (SD) age was 48.67 (12.33) years and mean (SD) nutritional risk index (NRI) was 100.47 (11.89) in the derivation cohort. Mortality after HT developed in 66 of 299 patients in the derivation cohort and 28 of 129 in the validation cohort. Age, NRI, serum creatine, and triglyceride were included in the full model. The AUC of this model was 0.76 and the C statistics was 0.72 (95% CI, 0.67-0.78) in the derivation cohort and 0.71 (95% CI, 0.62-0.81) in the validation cohort. The multivariable model improved integrated discrimination compared with the reduced model that included age and NRI (6.9%; 95% CI, 1.8%-15.1%) and the model which only included variable NRI (14.7%; 95% CI, 7.4%-26.2%) in the derivation cohort. Compared with the model that only included variable NRI, the full model improved categorical net reclassification index both in the derivation cohort (41.8%; 95% CI, 9.9%-58.8%) and validation cohort (60.7%; 95% CI, 9.0%-100.5%). Conclusion: The proposed model was able to predict mortality after HT and estimate individualized risk of postoperative death. Clinicians could use this model to identify patients at high risk of postoperative death before HT surgery, which would help with targeted preventative therapy to reduce the mortality risk.

19.
Postgrad Med J ; 100(1184): 414-420, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38330496

RESUMEN

BACKGROUND: Elderly patients are at increased risk of perioperative morbidity and mortality after conventional on-pump coronary artery bypass grafting (ONCABG). This study was to determine whether such high-risk population would benefit from off-pump coronary artery bypass grafting (OPCABG). METHODS: A retrospective analysis was performed on patients aged 65 years or older who underwent isolated coronary artery bypass grafting for the first time in Wuhan Union Hospital from January 2015 to January 2021. We used propensity score matching to adjust for differences in baseline characteristics between the ONCABG and OPCABG groups. Morbidity and mortality within 30 days after surgery were compared between the two groups. All operations were performed by experienced cardiac surgeons. RESULTS: A total of 511 patients (ONCABG 202, OPCABG 309) were included. After 1:1 matching, the baseline characteristics of the two groups were comparable (ONCABG 173, OPCABG 173). The OPCABG group had higher rate of incomplete revascularization (13.9% vs. 6.9%; P = .035) than the ONCABG group. However, OPCABG reduced the risk of postoperative renal insufficiency (15.0% vs. 30.1%; P = .001) and reoperation for bleeding (0.0% vs. 3.5%; P = .030). There were no significant differences in early postoperative mortality, myocardial infarction, stroke, and other outcomes between the two groups. CONCLUSIONS: OPCABG is an alternative revascularization method for elderly patients. It reduces the risk of early postoperative renal insufficiency and reoperation for bleeding.


Asunto(s)
Puente de Arteria Coronaria Off-Pump , Puente de Arteria Coronaria , Complicaciones Posoperatorias , Puntaje de Propensión , Humanos , Masculino , Puente de Arteria Coronaria Off-Pump/métodos , Puente de Arteria Coronaria Off-Pump/efectos adversos , Femenino , Anciano , Estudios Retrospectivos , Complicaciones Posoperatorias/epidemiología , Puente de Arteria Coronaria/métodos , Puente de Arteria Coronaria/efectos adversos , Enfermedad de la Arteria Coronaria/cirugía , China/epidemiología , Factores de Riesgo
20.
Circulation ; 149(18): 1435-1456, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357822

RESUMEN

BACKGROUND: A main obstacle in current valvular heart disease research is the lack of high-quality homogeneous functional heart valve cells. Human induced pluripotent stem cells (hiPSCs)-derived heart valve cells may help with this dilemma. However, there are no well-established protocols to induce hiPSCs to differentiate into functional heart valve cells, and the networks that mediate the differentiation have not been fully elucidated. METHODS: To generate heart valve cells from hiPSCs, we sequentially activated the Wnt, BMP4, VEGF (vascular endothelial growth factor), and NFATc1 signaling pathways using CHIR-99021, BMP4, VEGF-165, and forskolin, respectively. The transcriptional and functional similarity of hiPSC-derived heart valve cells compared with primary heart valve cells were characterized. Longitudinal single-cell RNA sequencing was used to uncover the trajectory, switch genes, pathways, and transcription factors of the differentiation. RESULTS: An efficient protocol was developed to induce hiPSCs to differentiate into functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells. After 6-day differentiation and CD144 magnetic bead sorting, ≈70% CD144+ cells and 30% CD144- cells were obtained. On the basis of single-cell RNA sequencing data, the CD144+ cells and CD144- cells were found to be highly similar to primary heart valve endothelial cells and primary heart valve interstitial cells in gene expression profile. Furthermore, CD144+ cells had the typical function of primary heart valve endothelial cells, including tube formation, uptake of low-density lipoprotein, generation of endothelial nitric oxide synthase, and response to shear stress. Meanwhile, CD144- cells could secret collagen and matrix metalloproteinases, and differentiate into osteogenic or adipogenic lineages like primary heart valve interstitial cells. Therefore, we identified CD144+ cells and CD144- cells as hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells, respectively. Using single-cell RNA sequencing analysis, we demonstrated that the trajectory of heart valve cell differentiation was consistent with embryonic valve development. We identified the main switch genes (NOTCH1, HEY1, and MEF2C), signaling pathways (TGF-ß, Wnt, and NOTCH), and transcription factors (MSX1, SP5, and MECOM) that mediated the differentiation. Finally, we found that hiPSC-derived valve interstitial-like cells might derive from hiPSC-derived valve endothelial-like cells undergoing endocardial-mesenchymal transition. CONCLUSIONS: In summary, this is the first study to report an efficient strategy to generate functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells from hiPSCs, as well as to elucidate the differentiation trajectory and transcriptional dynamics of hiPSCs differentiated into heart valve cells.


Asunto(s)
Diferenciación Celular , Válvulas Cardíacas , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA