Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytomedicine ; 126: 155437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394735

RESUMEN

BACKGROUND: In diabetic liver injury, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Rutin is a bioflavonoid produced by the hydrolysis of glucosidases to quercetin. Its biological activities include lowering blood glucose, regulating insulin secretion, regulating dyslipidemia, and exerting anti-inflammatory effects have been demonstrated. However, its effect on diabetic NAFLD is rarely reported. PURPOSE: Our study aimed to investigate the protective effects of Rutin on diabetic NAFLD and potential pharmacological mechanism. METHODS: We used db/db mice as the animal model to investigate diabetic NAFLD. Oleic acid-treated (OA) HeLa cells were examined whether Rutin had the ability to ameliorate lipid accumulation. HepG2 cells treated with 30 mM/l d-glucose and palmitic acid (PA) were used as diabetic NAFLD in vitro models. Total cholesterol (TC) and Triglycerides (TG) levels were determined. Oil red O staining and BODIPY 493/503 were used to detect lipid deposition within cells. The indicators of inflammation and oxidative stress were detected. The mechanism of Rutin in diabetic liver injury with NAFLD was analyzed using RNA-sequence and 16S rRNA, and the expression of fat-synthesizing proteins in the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway was investigated. Compound C inhibitors were used to further verify the relationship between AMPK and Rutin in diabetic NAFLD. RESULTS: Rutin ameliorated lipid accumulation in OA-treated HeLa. In in vitro and in vivo models of diabetic NAFLD, Rutin alleviated lipid accumulation, inflammation, and oxidative stress. 16S analysis showed that Rutin could reduce gut microbiota dysregulation, such as the ratio of Firmicutes to Bacteroidetes. RNA-seq showed that the significantly differentially genes were mainly related to liver lipid metabolism. And the ameliorating effect of Rutin on diabetic NAFLD was through AMPK/SREBP1 pathway and the related lipid synthesis proteins was involved in this process. CONCLUSION: Rutin ameliorated diabetic NAFLD by activating the AMPK pathway and Rutin might be a potential new drug ingredient for diabetic NAFLD.


Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/metabolismo , Rutina/farmacología , Células HeLa , ARN Ribosómico 16S , Hígado , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones Endogámicos C57BL
2.
Heliyon ; 9(3): e14171, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938470

RESUMEN

Aim: Diabetic nephropathy (DN) is the primary cause of end-stage renal disease worldwide. Although etiology for DN is complex and still needs to be fully understood, lipid metabolism disorder is found to play a role in it. Previously, we found Yishen Huashi (YSHS) granule could inhibit diabetic damage and reduce level of microalbuminuria (mALB) in DN animals. To explore its role and mechanism in lipid metabolism under DN settings, this study was designed. Materials and methods: DN rats were induced by streptozotocin (STZ), HepG2 and CaCO2 cells were applied for in vitro study. Hematoxylin-Eosin (HE), periodic acid-Schiff (PAS) staining, and Transmission Electron Microscopy (TEM) were applied for histological observation; 16s Sequencing was used for intestinal microbiota composition analysis; western blotting (WB) and immunofluorescence were carried out for molecular biological study, and enzyme-linked immunosorbent assay (ELISA) was used for lipid determination. Results: YSHS administration significantly reduced levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL-C), while increased level of high-density lipoprotein (HDL-C); meanwhile, histological changes and steatosis of the liver was ameliorated, integrity of the intestinal barrier was enhanced, and dysbacteriosis within intestinal lumen was ameliorated. Mechanism study found that YSHS modulated mitophagy within hepatocytes and inhibited mTOR/AMPK/PI3K/AKT signaling pathway. Conclusion: In conclusion, we found in the present study that YSHS administration could ameliorate lipid metabolism disorder in DN animals, and its modulation on intestinal-liver axis played a significant role in it.

3.
Phytomedicine ; 112: 154700, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774842

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is a primary microvascular complication of diabetes. However, a complete cure for DKD has not yet been found. Although there is evidence that Rutin can delay the onset of DKD, the underlying mechanism remains unclear. PURPOSE: To investigate the renoprotective effect of Rutin in the process of DKD and to explore its potential molecular mechanisms. METHODS: Db/db mice and high glucose (HG)-induced human renal glomerular endothelial cells (GEnCs) were used as in vivo and in vitro models, respectively. Western blot (WB), Immunohistochemistry (IHC)and Immunofluorescence (IF) staining were used to identify the expression level of proteins associated with endothelial-to-mesenchymal transition (EndMT) and autophagy. Tandem Mass Tag (TMT)-based proteomics analysis was utilized to reveal the mechanism of Rutin in DKD. Transfection with small interfering RNA (siRNA) to reveal the role of histone deacetylase 1 (HDAC1) in HG-induced GEnCs. RESULTS: Following 8 weeks of Rutin administration, db/db mice's kidney function and structure significantly improved. In HG-induced GEnCs, activation of autophagy attenuates cellular EndMT. Rutin could alleviate EndMT and restore autophagy in vivo and in vitro models. Proteomics analysis results showed that HDAC1 significantly downregulated in the 200 mg/kg/d Rutin group compared with the db/db group. Transfection with si-HDAC1 in GEnCs partially blocked HG-induced EndMT and restored autophagy. Furthermore, Rutin inhibits the phosphorylation of the PI3K / AKT/ mTOR pathway. HDAC1 overexpression was suppressed in HG-induced GEnCs after using Rapamycin, a specific mTOR inhibitor, verifying the correlation between mTOR and HDAC1. CONCLUSION: Rutin alleviates EndMT by restoring autophagy through inhibiting HDAC1 via the PI3K/AKT/mTOR pathway in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Células Endoteliales/metabolismo , Histona Desacetilasa 1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia
4.
Front Pharmacol ; 13: 872940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935814

RESUMEN

Background: Diabetic nephropathy (DN) is one of the most common complications of diabetes and the primary cause of end-stage renal disease. At present, renin-angiotensin-aldosterone system (RAAS) blockers have been applied as first-class drugs to restrain development of DN; however, its long-term effect is limited. Recent evidence has shown definite effects of Chinese medicine on DN. Yishen Huashi (YSHS) granule is a traditional Chinese Medicine prescription that has been used in the clinic to treat DN, but its mechanism is not understood. Methods: In the present study, both in vitro and in vivo studies were carried out. The DN model was induced by STZ in Wistar rats, and GEnC and HPC cell lines were applied in the in vitro study. Quality of YSHS was evaluated by LC-MS/MS. A metabolomic study of urine was carried out by LC-MS; influence of YSHS on composition of DN was analyzed by network pharmacology. Mechanism of the YSHS on DN was analyzed by Q-PCR, Western Blot, and multi-immunological methods. Results: We found YSHS administration significantly reduced levels of HbA1c and mALB. Histopathological analysis found that YSHS preserved integrity of glomerular filtration barrier by preserving viability of glomerular endothelial cells and podocytes, inhibiting glomerular fibrosis, reducing oxidative stress damage, and enhancing cross-talk among glomerular endothelial cells and podocytes. Network pharmacology, differential metabolite analysis, as well as intracellular pathway experimental study demonstrated that the PI3K/AKT/mTOR signaling pathway played a pivotal role in it. Conclusion: Our present findings supplied new understanding toward the mechanism of YSHS on inhibiting DN.

5.
J Diabetes ; 14(8): 514-523, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35999686

RESUMEN

Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus. It is the leading inducement of end-stage renal disease (ESRD), and its global incidence has been increasing at an alarming rate. The strict control of blood pressure and blood glucose can delay the progression of DKD, but intensive treatment is challenging to maintain. Studies to date have failed to find a complete cure. The glomerulus's alterations and injuries play a pivotal role in the initiation and development of DKD. A wealth of data indicates that the interdependent relationship between resident cells in the glomerulus will provide clues to the mechanism of DKD and new ways for therapeutic intervention. This review summarizes the significant findings of glomerular cell cross talk in DKD, focusing on cellular signaling pathways, regulators, and potential novel avenues for treating progressive DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Fallo Renal Crónico , Glucemia , Presión Sanguínea , Nefropatías Diabéticas/metabolismo , Humanos , Riñón/metabolismo , Glomérulos Renales/metabolismo
6.
Chin Med ; 17(1): 22, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151348

RESUMEN

BACKGROUND: Brain impairment is one of a major complication of diabetes. Dietary flavonoids have been recommended to prevent brain damage. Astragalus membranaceus is a herbal medicine commonly used to relieve the complications of diabetes. Flavonoids is one of the major ingredients of Astragalus membranaceus, but its function and mechanism on diabetic encepholopathy is still unknown. METHODS: Type 2 diabetes mellitus (T2DM) model was induced by high fat diet and STZ in C57BL/6J mice, and BEnd.3 and HT22 cell lines were applied in the in vitro study. Quality of flavonoids was evaluated by LC-MS/MS. Differential expressed proteins in the hippocampus were evaluated by proteomics; influence of the flavonoids on composition of gut microbiota was analyzed by metagenomics. Mechanism of the flavonoids on diabetic encepholopathy was analyzed by Q-PCR, Western Blot, and multi-immunological methods et al. RESULTS: We found that flavonoids from Astragalus membranaceus (TFA) significantly ameliorated brain damage by modulating gut-microbiota-brain axis: TFA oral administration decreased fasting blood glucose and food intake, repaired blood brain barrier, protected hippocampus synaptic function; improved hippocampus mitochondrial biosynthesis and energy metabolism; and enriched the intestinal microbiome in high fat diet/STZ-induced diabetic mice. In the in vitro study, we found TFA increased viability of HT22 cells and preserved gut barrier integrity in CaCO2 monocellular layer, and PGC1α/AMPK pathway participated in this process. CONCLUSION: Our findings demonstrated that flavonoids from Astragalus membranaceus ameliorated brain impairment, and its modulation on gut-brain axis plays a pivotal role. Our present study provided an alternative solution on preventing and treating diabetic cognition impairment.

7.
Artículo en Inglés | MEDLINE | ID: mdl-33953787

RESUMEN

Astragalus Radix is one of the common traditional Chinese medicines used to treat diabetes. However, the underlying mechanism is not fully understood. Flavones are a class of active components that have been reported to exert various activities. Existing evidence suggests that flavones from Astragalus Radix may be pivotal in modulating progression of diabetes. In this study, total flavones from Astragalus Radix (TFA) were studied to observe its effects on metabolism of bile acids both in vivo and in vitro. C57BL/6J mice were treated with STZ and high-fat feeding to construct diabetic model, and HepG2 cell line was applied to investigate the influence of TFA on liver cells. We found a serious disturbance of bile acids and lipid metabolism in diabetic mice, and oral administration or cell incubation with TFA significantly reduced the production of total cholesterol (TCHO), total triglyceride, glutamic oxalacetic transaminase (AST), glutamic-pyruvic transaminase (ALT), and low-density lipoprotein (LDL-C), while it increased the level of high-density lipoprotein (HDL-C). The expression of glucose transporter 2 (GLUT2) and cholesterol 7α-hydroxylase (CYP7A1) was significantly upregulated on TFA treatment, and FXR and TGR5 play pivotal role in modulating bile acid and lipid metabolism. This study supplied a novel understanding towards the mechanism of Astragalus Radix on controlling diabetes.

8.
FASEB J ; 34(4): 5282-5298, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067273

RESUMEN

Melatonin is a hormone produced by the pineal gland, and it has extensive beneficial effects on various tissue and organs; however, whether melatonin has any effect on cardiac fibrosis in the pathogenesis of diabetic cardiomyopathy (DCM) is still unknown. Herein, we found that melatonin administration significantly ameliorated cardiac dysfunction and reduced collagen production by inhibiting TGF-ß1/Smads signaling and NLRP3 inflammasome activation, as manifested by downregulating the expression of TGF-ß1, p-Smad2, p-Smad3, NLRP3, ASC, cleaved caspase-1, mature IL-1ß, and IL-18 in the heart of melatonin-treated mice with diabetes mellitus (DM). Similar beneficial effects of melatonin were consistently observed in high glucose (HG)-treated cardiac fibroblasts (CFs). Moreover, we also found that lncRNA MALAT1 (lncR-MALAT1) was increased along with concomitant decrease in microRNA-141 (miR-141) in DM mice and HG-treated CFs. Furthermore, we established NLRP3 and TGF-ß1 as target genes of miR-141 and lncR-MALAT1 as an endogenous sponge or ceRNA to limit the functional availability of miR-141. Finally, we observed that knockdown of miR-141 abrogated anti-fibrosis action of melatonin in HG-treated CFs. Our findings indicate that melatonin produces an antifibrotic effect via inhibiting lncR-MALAT1/miR-141-mediated NLRP3 inflammasome activation and TGF-ß1/Smads signaling, and it might be considered a potential agent for the treatment of DCM.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/patología , Fibrosis/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Cardiopatías/tratamiento farmacológico , Melatonina/farmacología , Animales , Antioxidantes/farmacología , Cardiomiopatías Diabéticas/epidemiología , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/patología , Inflamasomas/antagonistas & inhibidores , Inflamasomas/genética , Inflamasomas/metabolismo , Masculino , Ratones , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Largo no Codificante/genética , Proteínas Smad/antagonistas & inhibidores , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
9.
J Cell Physiol ; 235(11): 7769-7779, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710102

RESUMEN

Hyperglycemia-induced cardiac fibrosis is a prominent characteristic of diabetic cardiomyopathy. Changes in proinflammatory cytokines have been shown to lead to cardiac fibrosis in patients with diabetes mellitus. This study aimed to investigate the role of miR-150-5p in mediating cardiac inflammation and fibrosis in cardiac fibroblasts (CFs). Herein, we found that high-glucose (HG) treatment significantly induced cardiac inflammation, as manifested by increased proinflammatory cytokine production (IL-1ß) and NF-κB activity in CFs. Moreover, HG markedly aggravated cardiac fibrosis and increased levels of fibrotic markers (CTGF, FN, α-SMA) and extracellular matrix proteins (Col-I, Col-III) in CFs. At the same time, HG disturbed the TGF-ß1/Smad signaling pathway, as evidenced by increases in TGF-ß1 and p-Smad2/3 levels and decreases in Smad7 levels in CFs. Furthermore, we found that miR-150-5p was upregulated by HG, which negatively regulated Smad7 expression at the posttranscription level. Further study demonstrated that cardiac inflammation and fibrosis in CFs were corrected following miR-150-5p knockdown, but exacerbated by miR-150-5p overexpression. These data indicated that miR-150-5p inhibition could ameliorate NF-κB-related inflammation and TGF-ß1/Smad-induced cardiac fibrosis through targeting Smad7. Thus, miR-150-5p may be a novel promising target for treating diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Fibroblastos/patología , Glucosa/toxicidad , MicroARNs/metabolismo , Proteína smad7/metabolismo , Animales , Células Cultivadas , Cardiomiopatías Diabéticas/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Regulación de la Expresión Génica , Hiperglucemia/metabolismo , Hiperglucemia/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA