Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Front Plant Sci ; 15: 1412540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966148

RESUMEN

Introduction: Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods: In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion: These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.

2.
Front Plant Sci ; 15: 1428975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036362

RESUMEN

Sweetpotato is an economically important crop, and it has various advantages over other crops in addressing global food security and climate change. Although substantial articles have been published on the research of various aspects of sweetpotato biology, there are no specific reports to systematically crystallize the research achievements. The current review takes the lead in conducting a keyword-centric spatiotemporal dimensional bibliometric analysis of articles on sweetpotato research using CiteSpace software to comprehensively clarify the development status, research hotspot, and development trend in the past 30 years (1993-2022). Quantitative analysis was carried out on the publishing countries, institutions, disciplines, and scholars to understand the basic status of sweetpotato research; then, visual analysis was conducted on high-frequency keywords, burst keywords, and keyword clustering; the evolution of major research hotspots and the development trend in different periods were summarized. Finally, the three main development stages-preliminary stage (1993-2005), rapid stage (2006-2013), and diversified mature stage (2014-2022)-were reviewed and analyzed in detail. Particularly, the development needs of sweetpotato production in improving breeding efficiency, enhancing stress tolerance, coordinating high yield with high quality and high resistance, and promoting demand were discussed, which will help to comprehensively understand the development dynamics of sweetpotato research from different aspects of biological exploration.

3.
Med Dosim ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38910070

RESUMEN

Respiratory motion management is the crucial challenge for safe and effective application of lung stereotactic body radiotherapy (SBRT). The present study implemented lung SBRT treatment in voluntary deep inspiration breath-hold (DIBH) with surface-guided radiotherapy (SGRT) system and evaluated the geometric and dosimetric benefits of DIBH to organs-at-risk (OARs), aiming to advising the choice between DIBH technology and conventional free breathing 4 dimensions (FB-4D) technology. Five patients of lung SBRT treated in DIBH with SGRT at our institution were retrospectively analyzed. CT scans were acquired in DIBH and FB-4D, treatment plans were generated for both respiratory phases. The geometric and dosimetry of tumor, ipsilateral lung, double lungs and heart were compared between the DIBH and FB-4D treatment plans. In terms of target coverage, utilizing DIBH significantly reduced the mean plan target volume (PTV) by 21.9% (p = 0.09) compared to FB-4D, the conformity index (CI) of DIBH and FB-4D were comparable, but the dose gradient index (DGI) of DIBH was higher. With DIBH expanding lung, the volumes of ipsilateral lung and double lungs were 2535.1 ± 403.0cm3 and 4864.3 ± 900.2cm3, separately, 62.2% (p = 0.009) and 73.1% (p = 0.009) more than volumes of ipsilateral lung (1460.03 ± 146.60cm3) and double lungs (2811.25 ± 603.64cm3) in FB-4D. The heart volume in DIBH was 700.0 ± 146.1cm3, 11.6% (p = 0.021) less than that in FB-4D. As for OARs protection, the mean dose, percent of volume receiving > 20Gy (V20) and percent of volume receiving > 5Gy (V5) of ipsilateral lung in DIBH were significantly lower by 33.2% (p = 0.020), 44.0% (p = 0.022) and 24.5% (p = 0.037) on average, separately. Double lungs also showed significant decrease by 31.1% (p = 0.019), 45.5% (p = 0.024) and 20.9% (p = 0.048) on average for mean dose, V20 and V5 in DIBH. Different from the lung, the mean dose and V5 of heart showed no consistency between DIBH and FB-4D, but lower maximum dose of heart was achieved in DIBH for all patients in this study. Appling lung SBRT in DIBH with SGRT was feasibly performed with high patient compliance. DIBH brought significant dosimetric benefits to lung, however, it caused more or less irradiated heart dose that depend on the patients' individual differences which were unpredictable.

4.
J Environ Manage ; 365: 121344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909572

RESUMEN

Recovering phosphorus (P) and nitrogen (N) from wastewater not only contributes to environmental protection but also aligns with sustainable development goals. This study employed a magnesium-air fuel cell (Mg-O2-FC) to extract P and N from wastewater in the form of struvite (MgNH4·6H2O), based on the removal efficiency of ammonia and phosphate, electricity generation capacity and struvite purity to determine the optimal operation parameters. These parameters included hydraulic retention time (HRT), service life of magnesium sheet, and precipitation discharge frequency. The results showed that the removal efficiency of ammonia from 0 to 4h was 55.99%, and that from 4 to 12h was only 15.74%. The phosphate removal efficiency in the initial cycle was 97.68% but decreased to 63.25% after 24h. The phosphate removal rate in 2 min increased by 145% when the precipitation discharge frequency increased from 4 h/time to 24 h/time. Consequently, the HRT, service life of the magnesium sheet, and precipitation discharge frequency were selected as 4 h, 24 h, and 24 h/time. These optimized conditions provide valuable insights for the practical implementation of Mg-O2-FC in recovering N and P from wastewater.


Asunto(s)
Magnesio , Nitrógeno , Fósforo , Aguas Residuales , Fósforo/química , Fósforo/análisis , Aguas Residuales/química , Nitrógeno/análisis , Magnesio/química , Magnesio/análisis , Eliminación de Residuos Líquidos/métodos , Amoníaco/química , Fosfatos/química , Fosfatos/análisis
5.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 312-314, 2024 May 30.
Artículo en Chino | MEDLINE | ID: mdl-38863099

RESUMEN

Objective: To select high-quality and cost-effective dural (spinal) membrane repair materials, in order to reduce the cost of consumables procurement, save medical insurance funds, and optimize hospital operation and management. Methods: Taking the BS06B disease group (spinal cord and spinal canal surgery without extremely severe or severe complications and comorbidities, mainly diagnosed as congenital tethered cord syndrome) as an example, a retrospective analysis was conducted on the relevant data of surgical treatment for congenital tethered cord syndrome conducted in our hospital from January 2021 to June 2023. Safety and efficacy indicators in clinical application (incidence of postoperative epidural hemorrhage, incidence of postoperative purulent cerebrospinal meningitis, incidence of cerebrospinal fluid leakage, surgical duration, and postoperative hospital stay) were compared. Results: There was no difference in safety and effectiveness between different brands of dura mater repair materials. Conclusion: For the repair of small incisions in dura mater surgery, high-quality and cost-effective dura mater repair materials can be selected to reduce hospital costs and control expenses for the disease group.


Asunto(s)
Duramadre , Duramadre/cirugía , Estudios Retrospectivos , Humanos , Defectos del Tubo Neural/cirugía , Médula Espinal/cirugía
6.
Plants (Basel) ; 13(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794491

RESUMEN

MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.

7.
Front Psychol ; 15: 1361632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711753

RESUMEN

Objective: To investigate the changes in sleep conditions, anxiety, and depression levels among college students before and after entering the university. Methods: Utilizing a random sampling method, 692 new students from a college in Shandong province were selected in September 2019, and relevant indices were statistically analyzed in September 2021 following a comprehensive follow-up. Sleep status, anxiety, and depression levels were assessed using the Pittsburgh Sleep Quality Index (PSQI), Patient Health Questionnaire-9 (PHQ-9), and Generalized Anxiety Disorder-7 (GAD-7), respectively. Results: Gender, passive smoking, exercise, intake of fruits, and intake of seafood were identified as significant influencing factors on college students' sleep status, anxiety, and depression levels (p < 0.05). A substantial difference was observed in the sleep quality of college students between the early enrollment stage and the follow-up stage (p < 0.05). Moreover, a significant positive correlation was found between PSQI scores and the levels of anxiety and depression (p < 0.05), cumulatively explaining approximately 10% of the variance in anxiety and depression levels. Conclusion: The sleep quality of college students exhibited significant improvement after enrollment compared to the early enrollment period. Engaging in appropriate exercise and consuming fruits and seafood demonstrated a positive impact on sleep conditions, anxiety, and depression levels. These findings underscore the importance of fostering healthy lifestyle habits for promoting overall well-being among college students.

8.
J Hazard Mater ; 471: 134422, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677118

RESUMEN

Electron transfer pathways have been verified as overriding regimes when peroxydisulfate (PDS) was activated by porous carbon. The incorporation of graphitic structure into carbon matrix was favorable to the rapid electron transfer, but excessive graphitization would deteriorate the specific surface area (SSA), weakening the catalytic performance. The reasonable trade-off between SSA and graphitization degree was necessary and challenging for the preparation of efficient carbon based PS-activators. Herein, a series of graphitic porous carbon with discrepant SSA and graphitic structure were fabricated. The incorporation of graphitization tracks into ultra-thin edges on porous carbon film was verified by multifarious structural characterization. After trade-off, the optimum catalyst exhibited superior catalytic performance with degradation rate constant (kobs) exceeding that of ungraphitized precursor by up to 16.0 times. Mechanistic investigations substantiated that the sufficient SSA of catalyst provided favorable conditions for its affinity towards PDS and sulfadiazine (SDZ), resulting in the formation of PDS* complexes and SDZ adsorption, while the appropriate graphitization degree ensured the reinforced electron transfer rate, which collectively accelerated SDZ oxidation through electron-transfer pathway. The multivariate linear regression model linking kobs to SSA and graphitization degree was established providing basis to construct efficient catalysts for PDS activation.

9.
BMC Plant Biol ; 24(1): 193, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493089

RESUMEN

Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.


Asunto(s)
Ipomoea batatas , Estrés Fisiológico , Estrés Fisiológico/genética , Respuesta al Choque por Frío/genética , Ipomoea batatas/metabolismo , RNA-Seq , Cloruro de Sodio/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
10.
Opt Express ; 32(4): 6366-6381, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439341

RESUMEN

For the discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) 16/64 amplitude phase shift keying (APSK) system, the inevitable laser impairments including frequency offset (FO) and carrier phase noise (CPN) would cause different rotations of the received signal constellations. In addition, the combined effect of FO and amplifier spontaneous emission (ASE) noise induces the eigenvalue shift, accordingly the residual channel impairment (RCI) is inevitably yielded. To address the above problems, we deduce the joint impairment model of FO, CPN and RCI, and then propose a joint equalization scheme using two-stage cascaded extended Kalman filter (TSC-EKF) for these impairments. It performs frequency offset compensation in the first stage, subsequently carries out joint equalization of CPN and RCI in the second stage. Meanwhile, the minimum Euclidean distance and phase difference between the received symbols and the ideal 16/64APSK constellations are ingeniously fused to calculate the innovations of TSC-EKF. The effectiveness has been verified by 2 GBaud DS-NFDM 16/64 APSK simulations and DS-NFDM 16APSK transmission experiments. The results demonstrate that when performing the joint equalization of FO, CPN and RCI, the maximum FOE range of TSC-EKF scheme achieves 1.2 and 9.6 times as that of nonlinear frequency domain (NFD) scheme and fast Fourier transform -Like (FFT-Like) scheme, respectively. Furthermore, its maximum LW tolerance reaches 3.3 times as that of the M-th power scheme. Importantly, the complexity of TSC-EKF is 63.4% as that of NFD scheme and on an order of O(N).

11.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473738

RESUMEN

MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.


Asunto(s)
Proteínas de Dominio MADS , Solanum lycopersicum , Proteínas de Dominio MADS/genética , Flores/genética , Filogenia , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo
12.
BMC Plant Biol ; 24(1): 156, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424529

RESUMEN

BACKGROUND: bHLH transcription factors play significant roles in regulating plant growth and development, stress response, and anthocyanin biosynthesis. Sweetpotato is a pivotal food and industry crop, but little information is available on sweetpotato bHLH genes. RESULTS: Herein, 227 putative IbbHLH genes were defined on sweetpotato chromosomes, and fragment duplications were identified as the dominant driving force for IbbHLH expansion. These IbbHLHs were divided into 26 subfamilies through phylogenetic analysis, as supported by further analysis of exon-intron structure and conserved motif composition. The syntenic analysis between IbbHLHs and their orthologs from other plants depicted evolutionary relationships of IbbHLHs. Based on the transcriptome data under salt stress, the expression of 12 IbbHLHs was screened for validation by qRT-PCR, and differential and significant transcriptions under abiotic stress were detected. Moreover, IbbHLH123 and IbbHLH215, which were remarkably upregulated by stress treatments, had obvious transactivation activity in yeasts. Protein interaction detections and yeast two-hybrid assays suggested an intricate interaction correlation between IbbHLHs. Besides, transcriptome screening revealed that multiple IbbHLHs may be closely related to anthocyanin biosynthesis based on the phenotype (purple vs. white tissues), which was confirmed by subsequent qRT-PCR analysis. CONCLUSIONS: These results shed light on the promising functions of sweetpotato IbbHLHs in abiotic stress response and anthocyanin biosynthesis.


Asunto(s)
Antocianinas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Antocianinas/metabolismo , Filogenia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Fisiológico/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Methods ; 20(1): 6, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212839

RESUMEN

Water dropwort (Oenanthe javanica (Blume) DC), an aquatic perennial plant from the Apiaceae family, rich in dietary fibert, vitamins, and minerals. It usually grows in wet soils and water. Despite accumulating the transcriptomic data, gene function research on water dropwort is still far behind than that of the other crops. The cucumber mosaic virus (CMV) induced gene silencing was established to study the functions of gene and microRNA (miRNA) in the water dropwort. CMV Fast New York strain (CMV-Fny) genomic RNAs 1, 2, and 3 were individually cloned into pCB301 vectors. We deleted part of the ORF 2b region and introduced recognition sites. A CMV-induced gene silencing vector was employed to suppress the expression of endogenous genes, including phytoene desaturase (PDS). In order to assess the efficacy of gene silencing, we also cloned conserved sequence of gibberellin insensitive dwarf (GID1) cDNA sequences into the vector and inoculated the water dropwort. The height of CMV-GID1-infected plants was marginally reduced as a result of GID1 gene silencing, and their leaves were noticeably longer and thinner. Additionally, we also used a CMV-induced silencing vector to analyze the roles of endogenous miRNAs. We used a short tandem target mimic approach to clone miR319 and miR396 from water dropwort into the CMV vector. Plants with CMV-miRNA infection were driven to exhibit the distinctive phenotypes. We anticipate that functional genomic research on water dropwort will be facilitated by the CMV-induced gene silencing technique.

14.
Adv Sci (Weinh) ; 11(12): e2305682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225752

RESUMEN

There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.


Asunto(s)
Gelatina , Pérdida Auditiva Provocada por Ruido , Metacrilatos , Ratones , Animales , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/prevención & control , Niacinamida/uso terapéutico , NAD , Preparaciones de Acción Retardada/uso terapéutico , Porosidad , Microtomografía por Rayos X
15.
Opt Lett ; 48(21): 5707-5710, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910739

RESUMEN

We propose an amplified spontaneous emission (ASE) noise mitigation scheme utilizing digital frequency offset loading (DFO-loading) for discrete spectrum nonlinear frequency division multiplexing (DS-NFDM) systems. Firstly, based on the one-to-one mapping relationship between frequency offsets and eigenvalue positions, the transmitter side encodes 4-bit information onto 16 kinds of different digital frequency offsets. Then, a sliding window-assisted eigenvalue position (SWA-EP) decoding technology is further proposed to substitute the classical channel equalization and carrier phase recovery processes, with the purpose of recovering the original information. The numerical and experimental results demonstrate that, compared with b-coefficient 16 quadrature amplitude modulation (QAM) scheme, Q-factor gains are 2.1 dB under 15 dB optical signal-to-noise ratio (OSNR) and 1.8 dB after 800 km fiber transmission, respectively. Moreover, its complexity is only 0.6% of the b-coefficient scheme. The DFO-loading scheme offers an effective and low-complexity way to mitigate ASE noise of DS-NFDM system.

16.
Photodiagnosis Photodyn Ther ; 44: 103857, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890810

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is a gram-negative bacterium without spores, and it is one of the pathogens that easily cause secondary infectious diseases when human immune function is low. The purpose of this study is to explore the inhibitory effect of photodynamic antibacterial chemotherapy-induced by cationic porphyrin derivative on clinical P. aeruginosa and its mechanism. METHODS: The uptake of photosensitizer by P. aeruginosa and L929 cells was measured by an ultraviolet spectrophotometer. Effect of laser energy density on the bacterial activity of P. aeruginosa and post antibiotic effect were measured by bacterial suspension and tenfold dilution method. Flow cytometry and scanning electron microscopy were used to observe the activity and morphological changes of P. aeruginosa after PACT treatment. RESULTS: The uptake of Tetra-ATPP-Lys-by P. aeruginosa and L929 was shown as concentration-dependent and time-dependent. However the uptake of L929 cell had a clear difference with P. aeruginosa at the same time and concentration intervals(P < 0.05).The increasing laser energy density had a high inactivation effect of on P. aeruginosa at the same Tetra-ATPP-Lys-concentration(P < 0.05). Post-antibiotic effect of Tetra-ATPP-Lys -PACT was dose-dependent(P < 0.05). Bacterial viability which evaluated by the flow cytometry method demonstrated that the proportion of viable bacteria is decreased with the photosensitizer dose-dependent. The morphology and microstructure of P. aeruginosa after Tetra-ATPP-Lys -PACT was demonstrated by a scanning electron microscope(SEM). After PACT, the morphology of P. aeruginosa was rod-shaped, the outer membrane surface was rough, and the bacteria were dry flat, sunken, shrunk and deformed. CONCLUSIONS: Cationic porphyrin photosensitizer had a great damage effect on P. aeruginosa under the PACT, which can effectively destroy the microstructure of bacteria and lead to bacterial inactivation and death.


Asunto(s)
Fotoquimioterapia , Porfirinas , Infecciones por Pseudomonas , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Pseudomonas aeruginosa , Porfirinas/farmacología , Porfirinas/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
17.
Huan Jing Ke Xue ; 44(9): 5214-5221, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699839

RESUMEN

Due to the wide sources of biomass raw materials and the lack of limits for the endogenous pollutants in biochar and their dosage, some biochar with high endogenous pollutants may be used for environmental remediation, which results in potential environmental risks. In this study, three biochars were prepared from the straws of Pennisetum sp. grown in clean, moderately polluted and highly polluted soils, respectively. The total endogenous copper (Cu) and cadmium (Cd), acid-soluble fraction, and persistent free radical (PFRs) distribution in biochars were investigated, and their biotoxicities were evaluated based on wheat root elongation inhibition rate and antioxidant enzyme activity. The results indicated that total Cu in Jiuniu biochar from the highly polluted soil and total Cd in Shuiquan biochar from the moderately-polluted soil were 3.73 and 4.43 times higher than that in Hongrang biochar from the clean soil, respectively. Moreover, acid-soluble Cu in Jiuniu biochar was 3.32 and 2.84 times higher than that in Shuiquan and Hongrang biochar, respectively, and acid-soluble Cd in Shuiquan and Jiuniu biochar was 7.95 and 5.11 times higher than that in Hongrang biochar, respectively. All three biochars had PFRs with adjacent oxygen atoms centered on carbon and followed the order of Hongrang>Jiuniu>Shuiquan. Three biochar leaching solutions significantly inhibited wheat root elongation but enhanced the enzyme activities of SOD, POD, and CAT for the wheat seedlings compared with that in the control. In particular, the highest inhibition rate (27.7%) was found in Jiuniu biochar. This study indicated that the interaction of endogenous heavy metals and PFRs in biochar exhibited significant biotoxicity to wheat seedlings. In the future, more attention should be paid to the potential environmental toxicity of endogenous pollutants from biochar to avoid new environmental pollution problems.


Asunto(s)
Contaminantes Ambientales , Pennisetum , Cadmio/toxicidad , Contaminación Ambiental , Antioxidantes , Plantones
18.
Front Neurol ; 14: 1219590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533475

RESUMEN

Traumatic or non-traumatic spinal cord injury (SCI) can lead to severe disability and complications. The incidence of SCI is high, and the rehabilitation cycle is long, which increases the economic burden on patients and the health care system. However, there is no practical method of SCI treatment. Recently, transcranial magnetic stimulation (TMS), a non-invasive brain stimulation technique, has been shown to induce changes in plasticity in specific areas of the brain by regulating the activity of neurons in the stimulation site and its functionally connected networks. TMS is a new potential method for the rehabilitation of SCI and its complications. In addition, TMS can detect the activity of neural circuits in the central nervous system and supplement the physiological evaluation of SCI severity. This review describes the pathophysiology of SCI as well as the basic principles and classification of TMS. We mainly focused on the latest research progress of TMS in the physiological evaluation of SCI as well as the treatment of motor dysfunction, neuropathic pain, spasticity, neurogenic bladder, respiratory dysfunction, and other complications. This review provides new ideas and future directions for SCI assessment and treatment.

19.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108695

RESUMEN

Ascorbic acid (AsA) is an antioxidant with significant functions in both plants and animals. Despite its importance, there has been limited research on the molecular basis of AsA production in the fruits of Capsicum annuum L. In this study, we used Illumina transcriptome sequencing (RNA-seq) technology to explore the candidate genes involved in AsA biosynthesis in Capsicum annuum L. A total of 8272 differentially expressed genes (DEGs) were identified by the comparative transcriptome analysis. Weighted gene co-expression network analysis identified two co-expressed modules related to the AsA content (purple and light-cyan modules), and eight interested DEGs related to AsA biosynthesis were selected according to gene annotations in the purple and light-cyan modules. Moreover, we found that the gene GDP-L-galactose phosphorylase (GGP) was related to AsA content, and silencing GGP led to a reduction in the AsA content in fruit. These results demonstrated that GGP is an important gene controlling AsA biosynthesis in the fruit of Capsicum annuum L. In addition, we developed capsanthin/capsorubin synthase as the reporter gene for visual analysis of gene function in mature fruit, enabling us to accurately select silenced tissues and analyze the results of silencing. The findings of this study provide the theoretical basis for future research to elucidate AsA biosynthesis in Capsicum annuum L.


Asunto(s)
Capsicum , Glucógeno Fosforilasa de Forma Muscular , Ácido Ascórbico/genética , Frutas/genética , Capsicum/genética , Galactosa , Fosforilasas , Regulación de la Expresión Génica de las Plantas
20.
Front Endocrinol (Lausanne) ; 14: 1134318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008902

RESUMEN

Objective: A large body of literature has demonstrated the significant efficacy of antibiotic bone cement in treating infected diabetic foot wounds, but there is less corresponding evidence-based medical evidence. Therefore, this article provides a meta-analysis of the effectiveness of antibiotic bone cement in treating infected diabetic foot wounds to provide a reference basis for clinical treatment. Methods: PubMed, Embase, Cochrane library, Scoup, China Knowledge Network (CNKI), Wanfang database, and the ClinicalTrials.gov were searched, and the search time was from the establishment of the database to October 2022, and two investigators independently. Two investigators independently screened eligible studies, evaluated the quality of the literature using the Cochrane Evaluation Manual, and performed statistical analysis of the data using RevMan 5.3 software. Results: A total of nine randomized controlled studies (n=532) were included and, compared with the control group, antibiotic bone cement treatment reduced the time to wound healing (MD=-7.30 95% CI [-10.38, -4.23]), length of hospital stay (MD=-6.32, 95% CI [-10.15, -2.48]), time to bacterial conversion of the wound (MD=-5.15, 95% CI [-7.15,-2.19]), and the number of procedures (MD=-2.35, 95% CI [-3.68, -1.02]). Conclusion: Antibiotic bone cement has significant advantages over traditional treatment of diabetic foot wound infection and is worthy of clinical promotion and application. Systematic review registration: PROSPERO identifier, CDR 362293.


Asunto(s)
Antibacterianos , Cementos para Huesos , Pie Diabético , Infección de Heridas , Humanos , Cementos para Huesos/uso terapéutico , Antibacterianos/uso terapéutico , Pie Diabético/microbiología , Pie Diabético/terapia , Diabetes Mellitus , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA