Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
mBio ; : e0241723, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971267

RESUMEN

IMPORTANCE: Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.

2.
bioRxiv ; 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090500

RESUMEN

In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.

3.
Open Forum Infect Dis ; 10(3): ofad073, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36910697

RESUMEN

Background: Longer-term immune response data after 3 doses of coronavirus disease 2019 (COVID-19) mRNA vaccine remain limited, particularly among older adults and after Omicron breakthrough infection. Methods: We quantified wild-type- and Omicron-specific serum immunoglobulin (Ig)G levels, angiotensin-converting enzyme 2 displacement activities, and live virus neutralization up to 6 months after third dose in 116 adults aged 24-98 years who remained COVID-19 naive or experienced their first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during this time. Results: Among the 78 participants who remained COVID-19 naive throughout follow up, wild-type- and Omicron-BA.1-specific IgG concentrations were comparable between younger and older adults, although BA.1-specific responses were consistently significantly lower than wild-type-specific responses in both groups. Wild-type- and BA.1-specific IgG concentrations declined at similar rates in COVID-19-naive younger and older adults, with median half-lives ranging from 69 to 78 days. Antiviral antibody functions declined substantially over time in COVID-19-naive individuals, particularly in older adults: by 6 months, BA.1-specific neutralization was undetectable in 96% of older adults, versus 56% of younger adults. Severe acute respiratory syndrome coronavirus 2 infection, experienced by 38 participants, boosted IgG levels and neutralization above those induced by vaccination alone. Nevertheless, BA.1-specific neutralization remained significantly lower than wild-type, with BA.5-specific neutralization lower still. Higher Omicron BA.1-specific neutralization 1 month after third dose was an independent correlate of lower SARS-CoV-2 infection risk. Conclusions: Results underscore the immune benefits of the third COVID-19 mRNA vaccine dose in adults of all ages and identify vaccine-induced Omicron-specific neutralization as a correlate of protective immunity. Systemic antibody responses and functions however, particularly Omicron-specific neutralization, decline rapidly in COVID-19-naive individuals, particularly in older adults, supporting the need for additional booster doses.

4.
AIDS ; 37(5): F11-F18, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789806

RESUMEN

OBJECTIVE: Limited data exist regarding the immune benefits of fourth COVID-19 vaccine doses in people with HIV (PWH) receiving antiretroviral therapy (ART), particularly now that most have experienced a SARS-CoV-2 infection. We quantified wild-type, Omicron-BA.5 and Omicron-BQ.1-specific neutralization up to 1 month post-fourth COVID-19 vaccine dose in 63 (19 SARS-CoV-2-naive and 44 SARS-CoV-2-experienced) PWH. DESIGN: A longitudinal observational cohort. METHODS: Quantification of wild-type-, Omicron-BA.5, and Omicron-BQ.1-specific neutralization using live virus assays. RESULTS: Participants received monovalent (44%) and bivalent (56%) mRNA fourth doses. In COVID-19-naive PWH, fourth doses enhanced wild-type and Omicron-BA.5-specific neutralization modestly above three-dose levels ( P  = 0.1). In COVID-19-experienced PWH, fourth doses enhanced wild-type specific neutralization modestly ( P  = 0.1) and BA.5-specific neutralization substantially ( P  = 0.002). Consistent with humoral benefits of 'hybrid' immunity, COVID-19-experienced PWH exhibited the highest neutralization post-fourth dose, wherein those with Omicron-era infections displayed higher wild-type specific ( P  = 0.04) but similar BA.5 and BQ.1-specific neutralization than those with pre-Omicron-era infections. Nevertheless, BA.5-specific neutralization was significantly below wild-type in everyone regardless of COVID-19 experience, with BQ.1-specific neutralization lower still (both P  < 0.0001). In multivariable analyses, fourth dose valency did not affect neutralization magnitude. Rather, an mRNA-1273 fourth dose (versus a BNT162b2 one) was the strongest correlate of wild-type specific neutralization, while prior COVID-19, regardless of pandemic era, was the strongest correlate of BA.5 and BQ.1-specific neutralization post-fourth dose. CONCLUSION: Fourth COVID-19 vaccine doses, irrespective of valency, benefit PWH regardless of prior SARS-CoV-2 infection. Results support recommendations that all adults receive a fourth COVID-19 vaccine dose within 6 months of their third dose (or their most recent SARS-CoV-2 infection).


Asunto(s)
COVID-19 , Infecciones por VIH , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , SARS-CoV-2
5.
J Infect Dis ; 227(7): 838-849, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35668700

RESUMEN

BACKGROUND: Longer-term humoral responses to 2-dose coronavirus disease 2019 (COVID-19) vaccines remain incompletely characterized in people living with human immunodeficiency virus (HIV) (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, angiotensin-converting enzyme 2 (ACE2) displacement, and viral neutralization against wild-type and Omicron strains up to 6 months after 2-dose vaccination, and 1 month after the third dose, in 99 PLWH receiving suppressive antiretroviral therapy and 152 controls. RESULTS: Although humoral responses naturally decline after 2-dose vaccination, we found no evidence of lower antibody concentrations or faster rates of antibody decline in PLWH compared with controls after accounting for sociodemographic, health, and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after 2 doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than responses against wild-type virus. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after 2- and 3-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , VIH , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunación , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Antivirales
6.
AIDS ; 37(5): 709-721, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36545783

RESUMEN

BACKGROUND: Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN: Longitudinal observational cohort. METHODS: We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS: Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION: Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Formación de Anticuerpos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , SARS-CoV-2 , Vacunación , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
PLoS Pathog ; 18(11): e1010613, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36331974

RESUMEN

The lung is an understudied site of HIV persistence. We isolated 898 subgenomic proviral sequences (nef) by single-genome approaches from blood and lung from nine individuals on long-term suppressive antiretroviral therapy (ART), and characterized genetic diversity and compartmentalization using formal tests. Consistent with clonal expansion as a driver of HIV persistence, identical sequences comprised between 8% to 86% of within-host datasets, though their location (blood vs. lung) followed no consistent pattern. The majority (77%) of participants harboured at least one sequence shared across blood and lung, supporting the migration of clonally-expanded cells between sites. The extent of blood proviral diversity on ART was also a strong indicator of diversity in lung (Spearman's ρ = 0.98, p<0.0001). For three participants, insufficient lung sequences were recovered to reliably investigate genetic compartmentalization. Of the remainder, only two participants showed statistically significant support for compartmentalization when analysis was restricted to distinct proviruses per site, and the extent of compartmentalization was modest in both cases. When all within-host sequences (including duplicates) were considered, the number of compartmentalized datasets increased to four. Thus, while a subset of individuals harbour somewhat distinctive proviral populations in blood and lung, this can simply be due to unequal distributions of clonally-expanded sequences. For two participants, on-ART proviruses were also phylogenetically analyzed in context of plasma HIV RNA populations sampled up to 18 years prior, including pre-ART and during previous treatment interruptions. In both participants, on-ART proviruses represented the most ancestral sequences sampled within-host, confirming that HIV sequences can persist in the body for decades. This analysis also revealed evidence of re-seeding of the reservoir during treatment interruptions. Results highlight the genetic complexity of proviruses persisting in lung and blood during ART, and the uniqueness of each individual's proviral composition. Personalized HIV remission and cure strategies may be needed to overcome these challenges.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Provirus/genética , Antirretrovirales/uso terapéutico , VIH-1/genética , Linfocitos T CD4-Positivos , Variación Genética , Pulmón , Carga Viral/genética
8.
Front Immunol ; 13: 947021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148225

RESUMEN

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant's wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant's responses to the cohort ≥95th percentile, but even this strong "hybrid" immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.


Asunto(s)
COVID-19 , Vacunas Virales , Enzima Convertidora de Angiotensina 2 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , SARS-CoV-2 , Vacunación
9.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543278

RESUMEN

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
10.
medRxiv ; 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35350205

RESUMEN

Background: Longer-term humoral responses to two-dose COVID-19 vaccines remain incompletely characterized in people living with HIV (PLWH), as do initial responses to a third dose. Methods: We measured antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement and viral neutralization against wild-type and Omicron strains up to six months following two-dose vaccination, and one month following the third dose, in 99 PLWH receiving suppressive antiretroviral therapy, and 152 controls. Results: Though humoral responses naturally decline following two-dose vaccination, we found no evidence of lower antibody concentrations nor faster rates of antibody decline in PLWH compared to controls after accounting for sociodemographic, health and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after two doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though anti-Omicron responses were consistently weaker than against wild-type.Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. Conclusion: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after two- and three-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.

11.
J Antimicrob Chemother ; 77(4): 979-988, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061879

RESUMEN

BACKGROUND: Routine HIV drug resistance genotyping identified an integrase sequence harbouring T97A, E138K, G140S and Q148H, with high predicted resistance to all integrase strand transfer inhibitors (INSTIs). OBJECTIVES: To assess the impact of these substitutions alone and together on phenotypic INSTI susceptibility. METHODS: We constructed recombinant NL4.3 viruses harbouring all mutation combinations in the autologous integrase sequence. Viruses were grown in GFP-reporter CD4+ T-cells in the presence of 0.01-1000 nM raltegravir, elvitegravir, dolutegravir, bictegravir, and cabotegravir. Infection was measured by imaging cytometry. RESULTS: Q148H-containing viruses lacking G140S failed to propagate or mutated in vitro, consistent with fitness costs. Statistically significant reductions in INSTI susceptibility were observed for several mutation combinations, as follows. T97A or G140S alone conferred 3.6- to 5.6-fold decreased susceptibility to raltegravir and elvitegravir. Two-mutation combinations conferred low-to-moderate resistance to raltegravir and elvitegravir only, except G140S/Q148H which eliminated raltegravir and elvitegravir activity and conferred 24.6-, 7.9-, and 107.5-fold reduced susceptibility to dolutegravir, bictegravir and cabotegravir. Addition of E138K to G140S/Q148H conferred 35.5, 11.6 and 208-fold reduced susceptibility to dolutegravir, bictegravir, and cabotegravir, while addition of T97A to G140S/Q148H conferred 318, 121 and >1000-fold reduced susceptibility to these drugs. T97A/E138K/G140S/Q148H in the autologous backbone conferred >300-fold reduced susceptibility to all INSTIs. Notably, bictegravir EC50 was significantly lower when T97A/E138K/G140S/Q148H was introduced into NL4.3, suggesting that other mutations in the autologous sequence enhanced resistance. CONCLUSIONS: High-level dolutegravir, bictegravir and cabotegravir resistance requires multiple integrase substitutions including compensatory mutations. T97A and E138K further enhance the resistance conferred by G140S/Q148H, yielding >300-fold decreased susceptibility to all INSTIs when all four mutations are present.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Humanos , Mutación , Piridonas/farmacología , Raltegravir Potásico/farmacología , Raltegravir Potásico/uso terapéutico
12.
medRxiv ; 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35018381

RESUMEN

BACKGROUND: Third COVID-19 vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and Omicron (BA.1) strains from pre-vaccine up to one month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following two vaccine doses, humoral immunity was weaker, less functional and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. Third doses boosted antibody binding and function to higher levels than second-doses, and induced responses in older adults that were comparable in magnitude to those in younger adults. Humoral responses against Omicron were universally weaker than against the ancestral strain after both second and third doses; nevertheless, after three doses, anti-Omicron responses in older adults reached equivalence to those in younger adults. After three vaccine doses, the number of chronic health conditions, but not age per se, was the strongest consistent correlate of weaker humoral responses. CONCLUSION: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.

13.
Viruses ; 15(1)2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36680168

RESUMEN

The greatest HIV-1 genetic diversity is found in West/Central Africa due to the pandemic's origins in this region, but this diversity remains understudied. We characterized HIV-1 subtype diversity (from both sub-genomic and full-genome viral sequences), drug resistance and coreceptor usage in 103 predominantly (90%) antiretroviral-naive individuals living with HIV-1 in Ghana. Full-genome HIV-1 subtyping confirmed the circulating recombinant form CRF02_AG as the dominant (53.9%) subtype in the region, with the complex recombinant 06_cpx (4%) present as well. Unique recombinants, most of which were mosaics containing CRF02_AG and/or 06_cpx, made up 37% of sequences, while "pure" subtypes were rare (<6%). Pretreatment resistance to at least one drug class was observed in 17% of the cohort, with NNRTI resistance being the most common (12%) and INSTI resistance being relatively rare (2%). CXCR4-using HIV-1 sequences were identified in 23% of participants. Overall, our findings advance our understanding of HIV-1 molecular epidemiology in Ghana. Extensive HIV-1 genetic diversity in the region appears to be fueling the ongoing creation of novel recombinants, the majority CRF02_AG-containing, in the region. The relatively high prevalence of pretreatment NNRTI resistance but low prevalence of INSTI resistance supports the use of INSTI-based first-line regimens in Ghana.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Ghana/epidemiología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Epidemiología Molecular , Filogenia , Resistencia a Medicamentos , Genotipo , Farmacorresistencia Viral/genética
14.
Viruses ; 13(9)2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34578305

RESUMEN

Despite the effectiveness of direct-acting antiviral agents in treating hepatitis C virus (HCV), cases of treatment failure have been associated with the emergence of resistance-associated substitutions. To better guide clinical decision-making, we developed and validated a near-whole-genome HCV genotype-independent next-generation sequencing strategy. HCV genotype 1-6 samples from direct-acting antiviral agent treatment-naïve and -treated HCV-infected individuals were included. Viral RNA was extracted using a NucliSens easyMAG and amplified using nested reverse transcription-polymerase chain reaction. Libraries were prepared using Nextera XT and sequenced on the Illumina MiSeq sequencing platform. Data were processed by an in-house pipeline (MiCall). Nucleotide consensus sequences were aligned to reference strain sequences for resistance-associated substitution identification and compared to NS3, NS5a, and NS5b sequence data obtained from a validated in-house assay optimized for HCV genotype 1. Sequencing success rates (defined as achieving >100-fold read coverage) approaching 90% were observed for most genotypes in samples with a viral load >5 log10 IU/mL. This genotype-independent sequencing method resulted in >99.8% nucleotide concordance with the genotype 1-optimized method, and 100% agreement in genotype assignment with paired line probe assay-based genotypes. The assay demonstrated high intra-run repeatability and inter-run reproducibility at detecting substitutions above 2% prevalence. This study highlights the performance of a freely available laboratory and bioinformatic approach for reliable HCV genotyping and resistance-associated substitution detection regardless of genotype.


Asunto(s)
Genotipo , Hepacivirus/genética , Hepatitis C/virología , ARN Viral/genética , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/normas , Técnicas de Genotipaje , Hepacivirus/clasificación , Hepatitis C/diagnóstico , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Carga Viral
15.
J Mol Diagn ; 23(8): 907-919, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062285

RESUMEN

Quantitative viral load assays have transformed our understanding of viral diseases. They hold similar potential to advance COVID-19 control and prevention, but SARS-CoV-2 viral load tests are not yet widely available. SARS-CoV-2 molecular diagnostic tests, which typically employ real-time RT-PCR, yield semiquantitative results only. Droplet digital RT-PCR (RT-ddPCR) offers an attractive platform for SARS-CoV-2 RNA quantification. Eight primer/probe sets originally developed for real-time RT-PCR-based SARS-CoV-2 diagnostic tests were evaluated for use in RT-ddPCR; three were identified as the most efficient, precise, and sensitive for RT-ddPCR-based SARS-CoV-2 RNA quantification. For example, the analytical efficiency for the E-Sarbeco primer/probe set was approximately 83%, whereas assay precision, measured as the coefficient of variation, was approximately 2% at 1000 input copies/reaction. Lower limits of quantification and detection for this primer/probe set were 18.6 and 4.4 input SARS-CoV-2 RNA copies/reaction, respectively. SARS-CoV-2 RNA viral loads in a convenience panel of 48 COVID-19-positive diagnostic specimens spanned a 6.2log10 range, confirming substantial viral load variation in vivo. RT-ddPCR-derived SARS-CoV-2 E gene copy numbers were further calibrated against cycle threshold values from a commercial real-time RT-PCR diagnostic platform. This log-linear relationship can be used to mathematically derive SARS-CoV-2 RNA copy numbers from cycle threshold values, allowing the wealth of available diagnostic test data to be harnessed to address foundational questions in SARS-CoV-2 biology.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/genética , SARS-CoV-2/genética , COVID-19/virología , Humanos , Límite de Detección , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Carga Viral/métodos
17.
Sci Rep ; 11(1): 9986, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976241

RESUMEN

Most individuals chronically infected with hepatitis C virus (HCV) are asymptomatic during the initial stages of infection and therefore the precise timing of infection is often unknown. Retrospective estimation of infection duration would improve existing surveillance data and help guide treatment. While intra-host viral diversity quantifications such as Shannon entropy have previously been utilized for estimating duration of infection, these studies characterize the viral population from only a relatively short segment of the HCV genome. In this study intra-host diversities were examined across the HCV genome in order to identify the region most reflective of time and the degree to which these estimates are influenced by high-risk activities including those associated with HCV acquisition. Shannon diversities were calculated for all regions of HCV from 78 longitudinally sampled individuals with known seroconversion timeframes. While the region of the HCV genome most accurately reflecting time resided within the NS3 gene, the gene region with the highest capacity to differentiate acute from chronic infections was identified within the NS5b region. Multivariate models predicting duration of infection from viral diversity significantly improved upon incorporation of variables associated with recent public, unsupervised drug use. These results could assist the development of strategic population treatment guidelines for high-risk individuals infected with HCV and offer insights into variables associated with a likelihood of transmission.


Asunto(s)
Consumidores de Drogas , Variación Genética , Genoma Viral , Hepacivirus/genética , Hepatitis C/virología , Humanos , Modelos Lineales , Estudios Prospectivos
19.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33988715

RESUMEN

HIV-specific CD8+ T cells partially control viral replication and delay disease progression, but they rarely provide lasting protection, largely due to immune escape. Here, we show that engrafting mice with memory CD4+ T cells from HIV+ donors uniquely allows for the in vivo evaluation of autologous T cell responses while avoiding graft-versus-host disease and the need for human fetal tissues that limit other models. Treating HIV-infected mice with clinically relevant HIV-specific T cell products resulted in substantial reductions in viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an IL-15 superagonist, but it was ultimately limited by the pervasive selection of a diverse array of escape mutations, recapitulating patterns seen in humans. By applying mathematical modeling, we show that the kinetics of the CD8+ T cell response have a profound impact on the emergence and persistence of escape mutations. This "participant-derived xenograft" model of HIV provides a powerful tool for studying HIV-specific immunological responses and facilitating the development of effective cell-based therapies.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/inmunología , Xenoinjertos/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células HEK293 , Infecciones por VIH/virología , Xenoinjertos/virología , Humanos , Inmunoterapia/métodos , Interleucina-15/inmunología , Ratones , Mutación/inmunología , Viremia/inmunología , Viremia/virología , Replicación Viral/inmunología
20.
Emerg Infect Dis ; 27(6): 1673-1676, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33784237

RESUMEN

To screen all severe acute respiratory syndrome coronavirus 2-positive samples in Vancouver, British Columbia, Canada, and determine whether they represented variants of concern, we implemented a real-time reverse transcription PCR-based algorithm. We rapidly identified 77 samples with variants: 57 with B.1.1.7, 7 with B.1.351, and an epidemiologic cluster of 13 with B.1.1.28/P.1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Colombia Británica/epidemiología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA