Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308359

RESUMEN

Wound healing presents a formidable challenge for global healthcare systems. We aimed to address this challenge by designing a multifunctional wound dressing tailored to meet diverse therapeutic needs. Arginine (Arg), selected for its ability to promote wound healing, is grafted onto aldehyde-modified regenerated cellulose (DAC) via Schiff base bonds for a reversible controlled release. At the same time, DAC provides hemostatic function, while Zn2+ plays an antibacterial role and strengthens cross-linking within the dressing matrix. The hydrogels were characterized by FTIR, XRD, SEM, and EDS. Mechanical strength, adhesion, swelling, water retention, oxygen permeability, hemostasis, antioxidant capacity, and antibacterial activity were all rigorously evaluated to demonstrate the superior properties of the dressing, which promotes accelerated wound healing. The skin of injured mice has been shown to recover almost completely within 13 days of dressing treatment. These findings highlight the potential of this innovative multifunctional wound dressing to address complex wound management challenges.

2.
Int J Biol Macromol ; 264(Pt 2): 130675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462109

RESUMEN

The study aimed to develop a multifunctional wound dressing with enhanced antibacterial properties and wound healing promotion. The synthesis process involved preparing oxidized regenerated cellulose (ORC) following a modified procedure, synthesizing chitosan/silver nanoparticles (CS/Ag NPs) via an in-situ reduction method, and subsequently preparing ORC/CS/Lys@Ag NPs hydrogels. Characterization techniques including FTIR, XRD, SEM, and EDS were employed to analyze functional groups, lattice structure, morphology, and elemental composition. Gelation time, swelling behavior, water retention, mechanical properties, viscosity, self-healing capacity, rheological behavior, oxygen permeability, in vitro degradation, release of Ag+, and antibacterial properties were evaluated using various experimental methods. Results indicated that the novel wound dressing has the capability to evenly distribute Ag NPs to effectively counteract bacteria. It can maintain moist conditions for 86 h, resist a sturdy mechanical pressure of 11.3 KPa, and degrade by 11.045 % ± 0.429 within 8 h. Combining its efficient gas exchange abilities, self-repairing function, and biocompatibility, almost full recovery was observed in injured mouse skin within 13 days, highlighting its promising clinical utility.


Asunto(s)
Celulosa Oxidada , Celulosa , Quitosano , Nanopartículas del Metal , Ratones , Animales , Plata/química , Hidrogeles/farmacología , Hidrogeles/química , Celulosa Oxidada/farmacología , Lisina , Cicatrización de Heridas , Nanopartículas del Metal/química , Estudios Prospectivos , Antibacterianos/farmacología , Antibacterianos/química , Vendajes , Quitosano/química
3.
ACS Appl Mater Interfaces ; 16(2): 2972-2983, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170964

RESUMEN

Meeting the diverse requirements of effective wound repair while surpassing the single-function limitations of traditional wound dressings is a significant challenge. In this study, we successfully synthesized an inclusion complex of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and iodine using the saturated aqueous solution method. Additionally, dialdehyde cellulose (DAC) was extracted from fat-free cotton through oxidation. To enhance wound healing, l-glutamine (l-glu) was utilized as a functional molecule, resulting in composite hydrogels with hemostatic, sterilizing, and wound-healing-promoting properties that were achieved by adsorbing the resulting inclusion complex. Through TG and SEM analysis, we confirmed that iodine was effectively accommodated by cyclodextrin and was uniformly attached to the hydrogel. The hydrogel exhibits exceptional long-term moisturizing and bactericidal properties, while also demonstrating excellent swelling, oxygen permeability, hemolytic, and mechanical properties, fully satisfying the requirements of wound treatment. External coagulation tests revealed that the hydrogel can rapidly coagulate 4.5 times its own weight of blood. Moreover, in a full-thickness scald mouse model, the hydrogel effectively promotes wound healing. The development of this multifunctional composite hydrogel presents a novel approach to advance wound dressing research, holding substantial potential for practical applications.


Asunto(s)
Hemostáticos , Yodo , Ratones , Animales , Hidrogeles/farmacología , Cicatrización de Heridas , Hemostasis , Hemostáticos/farmacología , Yodo/farmacología , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA