Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nurs Open ; 11(3): e2118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436535

RESUMEN

AIM: To investigate the alterations of functional brain activity and connectivity in female nurses working on long-term shifts and explore their correlations with work-related psychological traits. DESIGN: An exploratory cross-sectional study. METHODS: Thirty-five female nurses working on long-term shifts (shift nurses) and 35 female nurses working on fixed days (fixed nurses) were enrolled. After assessing the work-related psychological traits, including burnout, perceived stress, anxiety, and depression of nurses, the fractional amplitude of low-frequency fluctuations (fALFF) and region of interest (ROI)-based functional connectivity (FC) analyses were performed to investigate the differences of brain spontaneous activity and functional connectivity between these two groups of nurses. Thereafter, correlations between the functional brain parameters (fALFF and FC) and clinical metrics were investigated among the shift nurses. RESULTS: Compared to fixed nurses, shift nurses had higher burnout, perceived stress and depression scores, lower fALFF in the right dorsolateral prefrontal cortex (dlPFC), left and right superior parietal lobule (SPL), bilateral anterior cingulate cortex (ACC), and higher fALFF in the right superior/middle temporal gyrus, as well as decreased FC between the right dlPFC (the selected ROI) and bilateral ACC, left and right inferior frontal/orbitofrontal gyrus (IFG/IOFG), right SPL, and left middle occipital gyrus (voxel-level p < 0.001, cluster level p < 0.05, GRF correction). Correlation analyses demonstrated that the fALFF value of the right dlPFC was significantly correlated with the burnout and anxiety scores, the FC value of the right dlPFC-right SPL was correlated with the perceived stress and burnout scores, the FC value of the right dlPFC-right IFG/IOFG was correlated with the burnout score in shift nurses (p < 0.05). CONCLUSION: Shift nurses had work-related altered functional activity and connectivity in the right frontoparietal network, which provided objective and visualised evidence to clarify the hazards of long-term shift work on female nurses. PATIENT OR PUBLIC CONTRIBUTION: Seventy nurses participated deeply as subjects in this study. These findings are expected to draw managers' attention to the harmful influences of shift work on nurses.


Asunto(s)
Agotamiento Psicológico , Corteza Prefontal Dorsolateral , Humanos , Femenino , Estudios Transversales , Corteza Prefrontal , Encéfalo
2.
J Integr Neurosci ; 23(1): 9, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38287846

RESUMEN

OBJECTIVES: To investigate the differences in functional brain activity and connectivity between nurses working long-term shifts and fixed day shift and explore their correlations with work-related psychological conditions. METHODS: Thirty-five nurses working long-term shifts and 35 nurses working fixed day shifts were recruited. After assessing work-related psychological conditions, such as burnout and perceived stress of these two groups of nurses, amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) analyses were performed to investigate the between-group differences in brain functional activity and connectivity. Furthermore, correlation analysis between the ALFF/FC metrics and psychological conditions was conducted. RESULTS: Compared with nurses working fixed day shifts, nurses working long-term shifts showed higher levels of burnout, perceived stress, and depression scores; lower z-transformed ALFF (zALFF) values in the right dorsolateral prefrontal cortex (dlPFC), right superior parietal lobule (SPL), and right anterior cingulate cortex (ACC); and higher zALFF values in the right middle temporal gyrus (voxel-level p < 0.001, cluster-level p < 0.05, gaussian random field (GRF) correction), as well as lower FC values in the right dlPFC-right SPL and right dlPFC-right ACC (p < 0.05, false discovery rate (FDR) corrected). Moreover, the FC values in the right dlPFC-right SPL were negatively correlated with the perceived stress score in nurses working long-term shifts (p < 0.05, FDR corrected). CONCLUSIONS: This study demonstrated that nurses working long-term shifts had lower functional activity and weaker functional connectivity in the right frontoparietal network, which mainly includes the right dlPFC and right SPL, than those working on regular day shift. The current findings provide new insights into the impacts of long-term shift work on nurses' mental health from a functional neuroimaging perspective.


Asunto(s)
Trastornos Mentales , Lóbulo Parietal , Humanos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Temporal , Giro del Cíngulo/diagnóstico por imagen , Neuroimagen Funcional , Imagen por Resonancia Magnética/métodos
3.
Adv Healthc Mater ; 12(26): e2300935, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37363954

RESUMEN

Messenger RNA (mRNA)-based vaccines have enormous potential in infectious disease prevention and tumor neoantigen application. However, developing an advanced delivery system for efficient mRNA delivery and intracellular release for protein translation remains a challenge. Herein, a biocompatible biomimetic system is designed using red blood cell-derived nanoerythrosomes (NER) and black phosphorus nanosheets (BP) for mRNA delivery. BP is covalently modified with polyethyleneimine (PEI), serving as a core to efficiently condense mRNA via electrostatic interactions. To facilitate the spleen targeting of the mRNA-loaded BP (BPmRNA ), NER is co-extruded with BPmRNA to construct a stable "core-shell" nanovaccine (NER@BPmRNA ). The mRNA nanovaccine exhibits efficient protein expression and immune activation via BP-mediated adjuvant effect and enhanced lysosomal escape. In vivo evaluation demonstrates that the system delivery of mRNA encoding coronavirus receptor-binding domain (RBD) significantly increases the antibody titer and pseudovirus neutralization effect compared with that of NER without BP assistance. Furthermore, the mRNA extracted from mouse melanoma tissues is utilized to simulate tumor neoantigen delivered by NER@BPmRNA . In the vaccinated mice, BP-assisted NER for the delivery of melanoma mRNA can induce more antibodies that specifically recognize tumor antigens. Thus, BP-assisted NER can serve as a safe and effective delivery vehicle in mRNA-based therapy.


Asunto(s)
Melanoma , Fósforo , Animales , Ratones , Fósforo/química , ARN Mensajero/genética , Sistemas de Liberación de Medicamentos , Antígenos de Neoplasias
4.
ACS Appl Mater Interfaces ; 15(22): 26285-26297, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37220137

RESUMEN

Pyroptosis is accompanied by immunogenic mediators' release and serves as an innovative strategy to reprogram tumor microenvironments. However, damaged mitochondria, the origin of pyroptosis, are frequently eliminated by mitophagy, which will severely impair pyroptosis-elicited immune activation. Herein, black phosphorus nanosheets (BP) are employed as a pyroptosis inducer delivery and mitophagy flux blocking system since the degradation of BP could impair lysosomal function by altering the pH within lysosomes. The pyroptosis inducer of lonidamine (LND) was precoupled with the mitochondrial target moiety of triphenylphosphonium to facilitate the occurrence of pyroptosis. The mitochondria-targeting LND-modified BP (BPTLD) were further encapsulated into the macrophage membrane to endow the BPTLD with blood-brain barrier penetration and tumor-targeting capability. The antitumor activities of membrane-encapsulated BPTLD (M@BPTLD) were investigated using a murine orthotopic glioblastoma model. The results demonstrated that the engineered nanosystem of M@BPTLD could target the mitochondria, and induce as well as reinforce pyroptosis via mitophagy flux blocking, thereby boosting the release of immune-activated factors to promote the maturation of dendritic cells. Furthermore, upon near-infrared (NIR) irradiation, M@BPTLD induced stronger mitochondrial oxidative stress, which further advanced robust immunogenic pyroptosis in glioblastoma cells. Thus, this study utilized the autophagy flux inhibition and phototherapy performance of BP to amplify LND-mediated pyroptosis, which might greatly contribute to the development of pyroptosis nanomodulators.


Asunto(s)
Glioblastoma , Animales , Ratones , Glioblastoma/metabolismo , Piroptosis , Fósforo/farmacología , Mitocondrias/metabolismo , Microambiente Tumoral
5.
Biophys J ; 120(17): 3764-3775, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34280368

RESUMEN

Although coupling between cardiomyocytes and myofibroblasts is well known to affect the physiology and pathophysiology of cardiac tissues across species, relating these observations to humans is challenging because the effect of this coupling varies across species and because the sources of these effects are not known. To identify the sources of cross-species variation, we built upon previous mathematical models of myofibroblast electrophysiology and developed a mechanoelectrical model of cardiomyocyte-myofibroblast interactions as mediated by electrotonic coupling and transforming growth factor-ß1. The model, as verified by experimental data from the literature, predicted that both electrotonic coupling and transforming growth factor-ß1 interaction between myocytes and myofibroblast prolonged action potential in rat myocytes but shortened action potential in human myocytes. This variance could be explained by differences in the transient outward K+ current associated with differential Kv4.2 gene expression across species. Results are useful for efforts to extrapolate the results of animal models to the predicted effects in humans and point to potential therapeutic targets for fibrotic cardiomyopathy.


Asunto(s)
Miocitos Cardíacos , Miofibroblastos , Potenciales de Acción , Animales , Diferenciación Celular , Células Cultivadas , Fibrosis , Miocitos Cardíacos/patología , Miofibroblastos/patología , Ratas , Factor de Crecimiento Transformador beta1
6.
ACS Macro Lett ; 8(12): 1552-1558, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35619381

RESUMEN

Nitric oxide (NO), as a bioeffector to improve chemosensitivity by reversing multidrug resistance (MDR), is highly attractive for developing combinational delivery systems to deal with MDR tumors, while it is highly challenged by the stability and controlled release of NO during the pathway. Here we design and synthesize a cyclic nitrate trimethylene carbonate monomer (NTC), followed by ring-opening polymerization to prepare amphiphilic biodegradable polycarbonate-based copolymers as polymeric NO donors with tailored contents. The copolymer with desirable molecular weight is readily self-assembled to biodegradable micelles (NO-M) with a uniform size of 130 nm for highly stabilizing NO donors at the physiological conditions, while triggered NO release from micelles is performed at the intracellular reduction conditions. More importantly, NO-M shows superior inhibition of P-gP expression to enhance the chemosensitivity of multidrug-resistant MCF7 cells (MCF7/DOXR). DOX-loaded NO-M (NO-M@DOX) realizes fast DOX release at the intracellular conditions, resulting in more intracellular DOX accumulation and higher antitumor activity mediated by the reduction-triggered NO/DOX release and NO-induced MDR reversal. Furthermore, the in vivo results show that NO-M@DOX effectively suppresses the MCF7/DOXR tumor growth by a combination of directly NO-induced therapy and NO-mediated enhanced chemotherapy; meanwhile, the treatment with NO-M systems have much fewer side effects.

7.
J Biomater Sci Polym Ed ; 28(14): 1603-1616, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28583017

RESUMEN

In vitro cell-based assays are widely applied to evaluate anti-cancer drug efficacy. However, the conventional approaches are mostly based on two-dimensional (2D) culture systems, making it difficult to recapitulate the in vivo tumor scenario because of spatial limitations. Here, we develop an in vitro three-dimensional (3D) prostate tumor model based on a hyaluronic acid (HA)-alginate hybrid hydrogel to bridge the gap between in vitro and in vivo anticancer drug evaluations. In situ encapsulation of PCa cells was achieved by mixing HA and alginate aqueous solutions in the presence of cells and then crosslinking with calcium ions. Unlike in 2D culture, cells were found to aggregate into spheroids in a 3D matrix. The expression of epithelial to mesenchyme transition (EMT) biomarkers was found to be largely enhanced, indicating an increased invasion and metastasis potential in the hydrogel matrix. A significant up-regulation of proangiogenic growth factors (IL-8, VEGF) and matrix metalloproteinases (MMPs) was observed in 3D-cultured PCa cells. The results of anti-cancer drug evaluation suggested a higher drug tolerance within the 3D tumor model compared to conventional 2D-cultured cells. Finally, we found that the drug effect within the in vitro 3D cancer model based on HA-alginate matrix exhibited better predictability for in vivo drug efficacy.


Asunto(s)
Alginatos/química , Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ácido Hialurónico/química , Neoplasias de la Próstata/patología , Biomarcadores de Tumor/metabolismo , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Masculino , Metaloproteinasas de la Matriz/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA