Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 124: 103364, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32360957

RESUMEN

Multiple biotypes of soybean aphid, Aphis glycines, occur in North America adapted for survival (virulence) on soybean, Glycine max, with one or more different resistance to A. glycines (Rag) traits. The degree of genome-wide variance between biotypes and the basis of virulence remains unknown, but the latter is hypothesized to involve secreted effector proteins. Between 167,249 and 217,750 single nucleotide polymorphisms (SNPs) were predicted from whole genome re-sequencing of A. glycines avirulent biotype 1 (B1) and virulent B2, B3 and B4 colony-derived iso-female lines when compared to the draft B1 genome assembly, Ag_bt1_v6.0. Differences in nucleotide diversity indices (π) estimated within 1000 bp sliding windows demonstrated that 226 of 353 (64.0%) regions most differentiated between B1 and ≥ 2 virulent biotypes, representing < 0.1% of the 308 Mb assembled genome size, are located on 15 unordered scaffolds. Furthermore, these 226 intervals were coincident and show a significant association with 326 of 508 SNPs with significant locus-by-locus FST estimates between biotype populations (r = 0.6271; F1,70 = 45.36, P < 0.001) and genes showing evidence of directions selection (πN/πS > 2.0; r = 0.6233; F1,70 = 50.20, P < 0.001). A putative secreted effector glycoprotein is encoded in proximity to genome intervals of low estimated π (putative selective sweep) within avirulent B1 compared to all three virulent biotypes. Additionally, SNPs are clustered in or in proximity to genes putatively involved in intracellular protein cargo transport and the regulation of secretion. Results of this study indicate that factors on a small number of scaffolds of the A. glycines genome may contribute to variance in virulence towards Rag traits in G. max.


Asunto(s)
Áfidos/genética , Glycine max/genética , Defensa de la Planta contra la Herbivoria/genética , Virulencia/genética , Animales , Áfidos/patogenicidad , Evolución Biológica , Genes de Plantas , Genoma de los Insectos , Genómica/métodos , Herbivoria , Control de Plagas , Plantas , Secuenciación Completa del Genoma
2.
Insect Biochem Mol Biol ; 120: 103334, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109587

RESUMEN

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is a serious pest of the soybean plant, Glycine max, a major world-wide agricultural crop. We assembled a de novo genome sequence of Ap. glycines Biotype 1, from a culture established shortly after this species invaded North America. 20.4% of the Ap. glycines proteome is duplicated. These in-paralogs are enriched with Gene Ontology (GO) categories mostly related to apoptosis, a possible adaptation to plant chemistry and other environmental stressors. Approximately one-third of these genes show parallel duplication in other aphids. But Ap. gossypii, its closest related species, has the lowest number of these duplicated genes. An Illumina GoldenGate assay of 2380 SNPs was used to determine the world-wide population structure of Ap. Glycines. China and South Korean aphids are the closest to those in North America. China is the likely origin of other Asian aphid populations. The most distantly related aphids to those in North America are from Australia. The diversity of Ap. glycines in North America has decreased over time since its arrival. The genetic diversity of Ap. glycines North American population sampled shortly after its first detection in 2001 up to 2012 does not appear to correlate with geography. However, aphids collected on soybean Rag experimental varieties in Minnesota (MN), Iowa (IA), and Wisconsin (WI), closer to high density Rhamnus cathartica stands, appear to have higher capacity to colonize resistant soybean plants than aphids sampled in Ohio (OH), North Dakota (ND), and South Dakota (SD). Samples from the former states have SNP alleles with high FST values and frequencies, that overlap with genes involved in iron metabolism, a crucial metabolic pathway that may be affected by the Rag-associated soybean plant response. The Ap. glycines Biotype 1 genome will provide needed information for future analyses of mechanisms of aphid virulence and pesticide resistance as well as facilitate comparative analyses between aphids with differing natural history and host plant range.


Asunto(s)
Adaptación Biológica , Áfidos/genética , Evolución Biológica , Ecotipo , Genoma de los Insectos , Especies Introducidas , Alelos , Animales , Polimorfismo de Nucleótido Simple , Estados Unidos
3.
Insect Biochem Mol Biol ; 113: 103208, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31422150

RESUMEN

The complete mitochondrial genome of the soybean aphid (Aphis glycines Matsumura), a major agricultural pest in the world, is described for the first time, which consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, as well as a large repeat region between tRNA-Glu and tRNA-Phe, and an AT-rich control region. The 17,954 bp mtgenome is the largest reported from the family Aphididae, and its gene order follows the ancestral insect mtgenome except for the repeat region, which contains a 195 bp unit repeated 11.9 times, representing the highest reported repeats among the known aphid mtgenomes to date. A new molecular phylogeny of Aphidae is reconstructed based on all available aphid mtgenomes, and it is shown that the mtgenome data can robustly resolve relationships at the subfamily level, but do not have sufficient phylogenetic information to resolve deep relationships. A phylogeny-based comparative analysis of mtgenomes has been performed to investigate the evolution of the repeat region between tRNA-Glu and tRNA-Phe. So far, among aphids, 13 species are known to have this repeat region of variable lengths, and a phylogenetic analysis of the repeat region shows that a large proportion of the sequences are conserved across the phylogeny, suggesting that the repeat region evolved in the most recent common ancestor of Aphidinae and Eriosomatinae, and that it has gone through numerous episodes of lineage-specific losses and expansions. Combined together, this study provides novel insights into how the repeat regions have evolved within aphids.


Asunto(s)
Áfidos/genética , Evolución Molecular , Genoma de los Insectos , Genoma Mitocondrial , Animales , Filogenia
4.
Sci Rep ; 7: 44565, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300212

RESUMEN

Container aquatic habitats support a specialized community of macroinvertebrates (e.g. mosquitoes) that feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to pesticides. We used a microcosm approach to examine the single and combined effects of two herbicides (atrazine, glyphosate), and three insecticides (malathion, carbaryl, permethrin) on microbial communities of container aquatic habitats. MiSeq sequencing of the V4 region of both bacterial and archaeal 16S rRNA gene was used to characterize the microbial communities of indoor microcosms that were either exposed to each pesticide alone, a mix of herbicides, a mix of insecticides, or a mix of all five insecticides. Individual insecticides but not herbicides reduced the microbial diversity and richness and two insecticides, carbaryl and permethrin, also altered the microbial community structure. A mixture of herbicides had no effect on microbial diversity or structure but a mixture of insecticides or all five pesticides reduced microbial diversity and altered the community structure. These findings suggest that exposure of aquatic ecosystems to individual pesticides or their mixtures can disrupt aquatic microbial communities and there is need to decipher how these changes affect resident macroinvertebrate communities.


Asunto(s)
Organismos Acuáticos/genética , Culicidae/efectos de los fármacos , Variación Genética/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Agricultura , Animales , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/microbiología , Atrazina/toxicidad , Carbaril/toxicidad , Ecosistema , Variación Genética/genética , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Larva/efectos de los fármacos , Malatión/toxicidad , Permetrina/toxicidad , Plaguicidas/toxicidad , ARN Ribosómico 16S/genética , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA