Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389674

RESUMEN

Astrocytes have emerged as a potential source for new neurons in the adult mammalian brain. In mice, adult striatal neurogenesis can be stimulated by local damage, which recruits striatal astrocytes into a neurogenic program by suppression of active Notch signaling (J. P. Magnusson et al., Science 346, 237-241 [2014]). Here, we induced adult striatal neurogenesis in the intact mouse brain by the inhibition of Notch signaling in astrocytes. We show that most striatal astrocyte-derived neurons are confined to the anterior medial striatum, do not express established striatal neuronal markers, and exhibit dendritic spines, which are atypical for striatal interneurons. In contrast to striatal neurons generated during development, which are GABAergic or cholinergic, most adult astrocyte-derived striatal neurons possess distinct electrophysiological properties, constituting the only glutamatergic striatal population. Astrocyte-derived neurons integrate into the adult striatal microcircuitry, both receiving and providing synaptic input. The glutamatergic nature of these neurons has the potential to provide excitatory input to the striatal circuitry and may represent an efficient strategy to compensate for reduced neuronal activity caused by aging or lesion-induced neuronal loss.


Asunto(s)
Astrocitos/fisiología , Conexina 30/metabolismo , Ácido Glutámico/metabolismo , Neuronas/fisiología , Animales , Diferenciación Celular , Conexina 30/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/farmacología , Fenómenos Electrofisiológicos , Neuronas GABAérgicas/enzimología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Interneuronas/enzimología , Proteínas Luminiscentes , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Recombinación Genética , Tamoxifeno/farmacología
2.
Nat Commun ; 11(1): 5113, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037215

RESUMEN

Striatal activity is dynamically modulated by acetylcholine and dopamine, both of which are essential for basal ganglia function. Synchronized pauses in the activity of striatal cholinergic interneurons (ChINs) are correlated with elevated activity of midbrain dopaminergic neurons, whereas synchronous firing of ChINs induces local release of dopamine. The mechanisms underlying ChIN synchronization and its interplay with dopamine release are not fully understood. Here we show that polysynaptic inhibition between ChINs is a robust network motif and instrumental in shaping the network activity of ChINs. Action potentials in ChINs evoke large inhibitory responses in multiple neighboring ChINs, strong enough to suppress their tonic activity. Using a combination of optogenetics and chemogenetics we show the involvement of striatal tyrosine hydroxylase-expressing interneurons in mediating this inhibition. Inhibition between ChINs is attenuated by dopaminergic midbrain afferents acting presynaptically on D2 receptors. Our results present a novel form of interaction between striatal dopamine and acetylcholine dynamics.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/citología , Interneuronas/metabolismo , Inhibición Neural/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/fisiología , Animales , Condicionamiento Clásico , Cuerpo Estriado/fisiología , Dopamina , Femenino , Masculino , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp , Receptores de Dopamina D2/metabolismo , Recompensa
3.
Proc Natl Acad Sci U S A ; 117(17): 9554-9565, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32321828

RESUMEN

The basal ganglia play an important role in decision making and selection of action primarily based on input from cortex, thalamus, and the dopamine system. Their main input structure, striatum, is central to this process. It consists of two types of projection neurons, together representing 95% of the neurons, and 5% of interneurons, among which are the cholinergic, fast-spiking, and low threshold-spiking subtypes. The membrane properties, soma-dendritic shape, and intrastriatal and extrastriatal synaptic interactions of these neurons are quite well described in the mouse, and therefore they can be simulated in sufficient detail to capture their intrinsic properties, as well as the connectivity. We focus on simulation at the striatal cellular/microcircuit level, in which the molecular/subcellular and systems levels meet. We present a nearly full-scale model of the mouse striatum using available data on synaptic connectivity, cellular morphology, and electrophysiological properties to create a microcircuit mimicking the real network. A striatal volume is populated with reconstructed neuronal morphologies with appropriate cell densities, and then we connect neurons together based on appositions between neurites as possible synapses and constrain them further with available connectivity data. Moreover, we simulate a subset of the striatum involving 10,000 neurons, with input from cortex, thalamus, and the dopamine system, as a proof of principle. Simulation at this biological scale should serve as an invaluable tool to understand the mode of operation of this complex structure. This platform will be updated with new data and expanded to simulate the entire striatum.


Asunto(s)
Simulación por Computador , Cuerpo Estriado/fisiología , Fenómenos Electrofisiológicos , Modelos Biológicos , Neuronas/fisiología , Animales , Corteza Cerebral/fisiología , Cuerpo Estriado/citología , Dopamina/metabolismo , Ratones , Receptores Dopaminérgicos/metabolismo , Tálamo/fisiología
4.
Front Neural Circuits ; 12: 64, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210305

RESUMEN

Expression of the Vglut2/Slc17a6 gene encoding the Vesicular glutamate transporter 2 (VGLUT2) in midbrain dopamine (DA) neurons enables these neurons to co-release glutamate in the nucleus accumbens (NAc), a feature of putative importance to drug addiction. For example, it has been shown that conditional deletion of Vglut2 gene expression within developing DA neurons in mice causes altered locomotor sensitization to addictive drugs, such as amphetamine and cocaine, in adulthood. Alterations in DA neurotransmission in the mesoaccumbal pathway has been proposed to contribute to these behavioral alterations but the underlying molecular mechanism remains largely elusive. Repeated exposure to cocaine is known to cause lasting adaptations of excitatory synaptic transmission onto medium spiny neurons (MSNs) in the NAc, but the putative contribution of VGLUT2-mediated glutamate co-release from the mesoaccumbal projection has never been investigated. In this study, we implemented a tamoxifen-inducible Cre-LoxP strategy to selectively probe VGLUT2 in mature DA neurons of adult mice. Optogenetics-coupled patch clamp analysis in the NAc demonstrated a significant reduction of glutamatergic neurotransmission, whilst behavioral analysis revealed a normal locomotor sensitization to amphetamine and cocaine. When investigating if the reduced level of glutamate co-release from DA neurons caused a detectable post-synaptic effect on MSNs, patch clamp analysis identified an enhanced baseline AMPA/NMDA ratio in DA receptor subtype 1 (DRD1)-expressing accumbal MSNs which occluded the effect of cocaine on synaptic transmission. We conclude that VGLUT2 in mature DA neurons actively contributes to glutamatergic neurotransmission in the NAc, a finding which for the first time highlights VGLUT2-mediated glutamate co-release in the complex mechanisms of synaptic plasticity in drug addiction.


Asunto(s)
Anfetamina/farmacología , Cocaína/farmacología , Dopaminérgicos/farmacología , Neuronas Dopaminérgicas/metabolismo , Ácido Glutámico/metabolismo , N-Metilaspartato/metabolismo , Plasticidad Neuronal/fisiología , Núcleo Accumbens/fisiología , Receptores de Dopamina D1/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Transmisión Sináptica/fisiología , Área Tegmental Ventral/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/metabolismo , Optogenética , Técnicas de Placa-Clamp , Transmisión Sináptica/efectos de los fármacos
5.
Artículo en Inglés | MEDLINE | ID: mdl-29467627

RESUMEN

The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.


Asunto(s)
Ganglios Basales/metabolismo , Simulación por Computador , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Modelos Neurológicos , Canales de Potasio Shal/metabolismo , Animales , Ganglios Basales/citología , Cuerpo Estriado/citología , Potenciales de la Membrana/fisiología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo
6.
Elife ; 52016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27669410

RESUMEN

Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called 'direct pathway', whereas PV+/Scgn- interneurons preferentially targeted 'indirect pathway' SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.


Asunto(s)
Cuerpo Estriado/fisiología , Interneuronas/fisiología , Neostriado/metabolismo , Parvalbúminas/metabolismo , Secretagoginas/metabolismo , Animales , Axones/fisiología , Ganglios Basales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cuerpo Estriado/citología , Femenino , Interneuronas/citología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA