Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39242199

RESUMEN

BACKGROUND: Evaluation of the structural integrity and functional excitability of the corticospinal tract (CST) is likely to be important in predicting motor recovery after stroke. Previous reports are inconsistent regarding a possible link between CST structure and CST function in this setting. This study aims to investigate the structure‒function relationship of the CST at the acute phase of stroke (<7 days). METHODS: We enrolled 70 patients who had an acute ischaemic stroke with unilateral upper extremity (UE) weakness. They underwent a multimodal assessment including clinical severity (UE Fugl Meyer at day 7 and 3 months), MRI to evaluate the CST lesion load and transcranial magnetic stimulation to measure the maximum amplitude of motor evoked potential (MEP). RESULTS: A cross-sectional lesion load above 87% predicted the absence of MEPs with an accuracy of 80.4%. In MEP-positive patients, the CST structure/function relationship was bimodal with a switch from a linear relationship (rho=-0.600, 95% CI -0.873; -0.039, p<0.03) for small MEP amplitudes (<0.703 mV) to a non-linear relationship for higher MEP amplitudes (p=0.72). In MEP-positive patients, recovery correlated with initial severity. In patients with a positive MEP <0.703 mV but not in patients with an MEP ≥0.703 mV, MEP amplitude was an additional independent predictor of recovery. In MEP-negative patients, we failed to identify any factor predicting recovery. CONCLUSION: This large multimodal study on the structure/function of the CST and stroke recovery proposes a paradigm change for the MEP-positive patients phenotypes and refines the nature of the link between structural integrity and neurophysiological function, with implications for study design and prognostic information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA