Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(13): 4245-4260, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37246985

RESUMEN

Formamide is rarely used as nitrogen source by microorganisms. Therefore, formamide and formamidase have been used as protection system to allow for growth under non-sterile conditions and for non-sterile production of acetoin, a product lacking nitrogen. Here, we equipped Corynebacterium glutamicum, a renowned workhorse for industrial amino acid production for 60 years, with formamidase from Helicobacter pylori 26695, enabling growth with formamide as sole nitrogen source. Thereupon, the formamide/formamidase system was exploited for efficient formamide-based production of the nitrogenous compounds L-glutamate, L-lysine, N-methylphenylalanine, and dipicolinic acid by transfer of the formamide/formamidase system to established producer strains. Stable isotope labeling verified the incorporation of nitrogen from formamide into biomass and the representative product L-lysine. Moreover, we showed ammonium leakage during formamidase-based access of formamide to be exploitable to support growth of formamidase-deficient C. glutamicum in co-cultivation and demonstrated that efficient utilization of formamide as sole nitrogen source benefitted from overexpression of formate dehydrogenase. KEY POINTS: • C. glutamicum was engineered to access formamide. • Formamide-based production of nitrogenous compounds was established. • Nitrogen cross-feeding supported growth of a formamidase-negative strain.


Asunto(s)
Corynebacterium glutamicum , Lisina , Lisina/metabolismo , Corynebacterium glutamicum/metabolismo , Aminas/metabolismo , Aminoácidos/metabolismo , Nitrógeno/metabolismo , Ingeniería Metabólica
2.
Microorganisms ; 10(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35456781

RESUMEN

Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L-1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L-1 in shake-flask and 1.5 g·L-1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA