Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Small ; : e2304778, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085139

RESUMEN

Rheological measurements with in situ visualization can elucidate the microstructural origin of complex flow behaviors of an ink. However, existing commercial rheometers suffer from high costs, the need for dedicated facilities for microfabrication, a lack of design flexibility, and cabling that complicates operation in sterile or enclosed environments. To address these limitations, a low-cost ($300) visual, in-expensive and wireless rheometer (VIEWR) using 3D-printed and off-the-shelf components is presented. VIEWR measurements are validated by steady-state and transient flow responses for different complex fluids, and microstructural flow profiles and evolution of yield-planes are revealed via particle image velocimetry. Using the VIEWR, a wholly-cellular bioink system comprised of compacted cell aggregates is characterized, and complex yield-stress and viscoelastic responses are captured via concomitantly visualizing the spatiotemporal evolution of aggregate morphology. A symmetric hyperbolic extensional-flow geometry is further constructed inside a capillary tube using digital light processing. Such geometries allow for measuring the extensional viscosity at varying deformation rates and further visualizing the alignment and stretching of aggregates under external flow. Synchronized but asymmetric evolution of aggregate orientation and strain through the neck is visualized. Using varying geometries, the jamming and viscoelastic deformation of aggregates are shown to contribute to the extensional viscosity of the wholly-cellular bioinks.

2.
Carbohydr Polym ; 320: 121229, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659795

RESUMEN

It is critical to monitor the structural evolution of complex fluids for optimal manufacturing performance, including textile spinning. However, in situ measurements in a textile-spinning process suffer from the paucity of non-destructive instruments and interpretations of the measured data. In this work, kinetic and rheo-optic properties of a cellulose/ionic liquid solution are measured simultaneously while fibers are regenerated in aqueous media from a model wet-spinning process via a customized polarized microscope. This system enables to capture key geometrical and structural information of the fiber under spinning at varying draw ratios and residence time, including the flow kinematics extracted from feature tracking, and the flow-induced morphology and birefringent responses. A physics-oriented rheological model is applied to connect the kinematic and structural measurements in a wet-spinning process incorporating both shear and extensional flows. The birefringent responses of fibers under coagulation are compared with an orientation factor incorporated in the constitutive model, from which a superposed structure-optic relationship under varying spinning conditions is identified. Such structural characterizations inferred from the flow dynamics of spinning dopes exhibit strong connections with the mechanical properties of the fully-regenerated fibers, thus enabling to predict the spinning performance in a non-destructive protocol.

3.
Adv Healthc Mater ; 11(24): e2201138, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36314397

RESUMEN

Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6- to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Técnicas de Cultivo de Célula , Proliferación Celular , Línea Celular , Reactores Biológicos
4.
Biomacromolecules ; 23(5): 1958-1969, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35442676

RESUMEN

Ionic liquids (ILs) hold great potential as solvents to dissolve, recycle, and regenerate cellulosic fabrics, but the dissolved cellulose material system requires greater study in conditions relevant to fiber spinning processes, especially characterization of nonlinear shear and extensional flows. To address this gap, we aimed to disentangle the effects of the temperature, cellulose concentration, and degree of polymerization (DOP) on the shear and extensional flows of cellulose dissolved in an IL. We have studied the behavior of cellulose from two sources, fabric and filter paper, dissolved in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) over a range of temperatures (25 to 80 °C) and concentrations (up to 4%) that cover both semidilute and entangled regimes. The linear viscoelastic (LVE) response was measured using small-amplitude oscillatory shear techniques, and the results were unified by reducing the temperature, concentration, and DOP onto a single master curve using time superposition techniques. The shear rheological data were further fitted to a fractional Maxwell liquid (FML) model and were found to satisfy the Cox-Merz rule within the measurement range. Meanwhile, the material response in the non-LVE (NLVE) regime at large strains and strain rates has special relevance for spinning processes. We quantified the NLVE behavior using steady shear flow tests alongside uniaxial extension using a customized capillary breakup extensional rheometer. The results for both shear and extensional NLVE responses were described by the Rolie-Poly model to account for flow-dependent relaxation times and nonmonotonic viscosity evolution with strain rates in an extensional flow, which primarily arise from complex polymer interactions at high concentrations. The physically interpretable model fitting parameters were further compared to describe differences in material response to different flow types at varying temperatures, concentrations, and DOP. Finally, the fitting parameters from the FML and Rolie-Poly models were connected under the same superposition framework to provide a comprehensive description within the wide measured parameter window for the flow and handling of cellulose in [C2C1Im][OAc] in both linear and nonlinear regimes.


Asunto(s)
Líquidos Iónicos , Celulosa , Fluorometolona , Reología/métodos , Solventes , Viscosidad
5.
Langmuir ; 38(14): 4371-4377, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35349299

RESUMEN

Bubble evolution plays a fundamental role in boiling and gas-evolving electrochemical systems. One key stage is bubble departure, which is traditionally considered to be buoyancy-driven. However, conventional understanding cannot provide the full physical picture, especially for departure events with small bubble sizes commonly observed in water splitting and high heat flux boiling experiments. Here, we report a new regime of bubble departure owing to the coalescence of two bubbles, where the departure diameter can be much smaller than the conventional buoyancy limit. We show the significant reduction of the bubble base area due to the dynamics of the three-phase contact line during coalescence, which promotes bubble departure. More importantly, combining buoyancy-driven and coalescence-induced bubble departure modes, we demonstrate a unified relationship between the departure diameter and nucleation site density. By elucidating how coalescing bubbles depart from a wall, our work provides design guidelines for energy systems which can largely benefit from efficient bubble departure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA