Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Sci Transl Med ; 16(756): eadk4802, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018365

RESUMEN

Snakebites affect about 1.8 million people annually. The current standard of care involves antibody-based antivenoms, which can be difficult to access and are generally not effective against local tissue injury, the primary cause of morbidity. Here, we used a pooled whole-genome CRISPR knockout screen to define human genes that, when targeted, modify cell responses to spitting cobra venoms. A large portion of modifying genes that conferred resistance to venom cytotoxicity was found to control proteoglycan biosynthesis, including EXT1, B4GALT7, EXT2, EXTL3, XYLT2, NDST1, and SLC35B2, which we validated independently. This finding suggested heparinoids as possible inhibitors. Heparinoids prevented venom cytotoxicity through binding to three-finger cytotoxins, and the US Food and Drug Administration-approved heparinoid tinzaparin was found to reduce tissue damage in mice when given via a medically relevant route and dose. Overall, our systematic molecular dissection of cobra venom cytotoxicity provides insight into how we can better treat cobra snakebite envenoming.


Asunto(s)
Venenos Elapídicos , Mordeduras de Serpientes , Animales , Humanos , Mordeduras de Serpientes/tratamiento farmacológico , Ratones , Antídotos/farmacología
2.
Adv Sci (Weinh) ; : e2403592, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023171

RESUMEN

Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.

3.
BMC Psychiatry ; 24(1): 422, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840083

RESUMEN

BACKGROUND: Mind wandering is a common phenomenon in daily life. However, the manifestations and cognitive correlates of mind wandering in different subclinical populations remain unclear. In this study, these aspects were examined in individuals with schizotypal traits and individuals with depressive symptoms, i.e., subclinical populations of patients with schizophrenia and depression. METHODS: Forty-two individuals with schizotypal traits, 42 individuals with subclinical depression, and 42 controls were recruited to complete a mind wandering thought sampling task (state level) and a mind wandering questionnaire (trait level). Measures of rumination and cognitive functions (attention, inhibition, and working memory) were also completed by participants. RESULTS: Both subclinical groups exhibited more state and trait mind wandering than did the control group. Furthermore, individuals with schizotypal traits demonstrated more trait mind wandering than individuals with subclinical depression. Rumination, sustained attention, and working memory were associated with mind wandering. In addition, mind wandering in individuals with subclinical depression can be accounted for by rumination or attention, while mind wandering in individuals with high schizotypal traits cannot be accounted for by rumination, attention, or working memory. CONCLUSIONS: The results suggest that individuals with high schizotypal traits and subclinical depression have different patterns of mind wandering and mechanisms. These findings have implications for understanding the unique profile of mind wandering in subclinical individuals.


Asunto(s)
Atención , Depresión , Memoria a Corto Plazo , Trastorno de la Personalidad Esquizotípica , Humanos , Masculino , Femenino , Trastorno de la Personalidad Esquizotípica/psicología , Trastorno de la Personalidad Esquizotípica/fisiopatología , Atención/fisiología , Memoria a Corto Plazo/fisiología , Depresión/psicología , Adulto , Adulto Joven , Pensamiento/fisiología , Rumiación Cognitiva/fisiología , Encuestas y Cuestionarios , Adolescente
4.
Clin Transl Med ; 14(6): e1735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899748

RESUMEN

BACKGROUND: Mitochondrial outer membrane permeabilisation (MOMP) plays a pivotal role in cellular death and immune activation. A deeper understanding of the impact of tumour MOMP on immunity will aid in guiding more effective immunotherapeutic strategies. METHODS: A comprehensive pan-cancer dataset comprising 30 cancer-type transcriptomic cohorts, 20 immunotherapy transcriptomic cohorts and three immunotherapy scRNA-seq datasets was collected and analysed to determine the influence of tumour MOMP activity on clinical prognosis, immune infiltration and immunotherapy effectiveness. Leveraging 65 scRNA-Seq datasets, the MOMP signature (MOMP.Sig) was developed to accurately reflect tumour MOMP activity. The clinical predictive value of MOMP.Sig was explored through machine learning models. Integration of the MOMP.Sig model and a pan-cancer immunotherapy CRISPR screen further investigated potential targets to overcome immunotherapy resistance, which subsequently underwent clinical validation. RESULTS: Our research revealed that elevated MOMP activity reduces mortality risk in cancer patients, drives the formation of an anti-tumour immune environment and enhances the response to immunotherapy. This finding emphasises the potential clinical application value of MOMP activity in immunotherapy. MOMP.Sig, offering a more precise indicator of tumour cell MOMP activity, demonstrated outstanding predictive efficacy in machine-learning models. Moreover, with the assistance of the MOMP.Sig model, FOXO1 was identified as a core modulator that promotes immune resistance. Finally, these findings were successfully validated in clinical immunotherapy cohorts of skin cutaneous melanoma and triple-negative breast cancer patients. CONCLUSIONS: This study enhances our understanding of MOMP activity in immune modulation, providing valuable insights for more effective immunotherapeutic strategies across diverse tumours.


Asunto(s)
Inmunoterapia , Membranas Mitocondriales , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Membranas Mitocondriales/metabolismo , Inmunomodulación/efectos de los fármacos
5.
Sci Transl Med ; 16(753): eadk0330, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924427

RESUMEN

Targeting ferroptosis for cancer therapy has slowed because of an incomplete understanding of ferroptosis mechanisms under specific pathological contexts such as tumorigenesis and cancer treatment. Here, we identify TRPML1-mediated lysosomal exocytosis as a potential anti-ferroptotic process through genome-wide CRISPR-Cas9 activation and kinase inhibitor library screening. AKT directly phosphorylated TRPML1 at Ser343 and inhibited K552 ubiquitination and proteasome degradation of TRPML1, thereby promoting TRPML1 binding to ARL8B to trigger lysosomal exocytosis. This boosted ferroptosis defense of AKT-hyperactivated cancer cells by reducing intracellular ferrous iron and enhancing membrane repair. Correlation analysis and functional analysis revealed that TRPML1-mediated ferroptosis resistance is a previously unrecognized feature of AKT-hyperactivated cancers and is necessary for AKT-driven tumorigenesis and cancer therapeutic resistance. TRPML1 inactivation or blockade of the interaction between TRPML1 and ARL8B inhibited AKT-driven tumorigenesis and cancer therapeutic resistance in vitro and in vivo by promoting ferroptosis. A synthetic peptide targeting TRPML1 inhibited AKT-driven tumorigenesis and enhanced the sensitivity of AKT-hyperactivated tumors to ferroptosis inducers, radiotherapy, and immunotherapy by boosting ferroptosis in vivo. Together, our findings identified TRPML1 as a therapeutic target in AKT-hyperactivated cancer.


Asunto(s)
Ferroptosis , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Factores de Ribosilacion-ADP/metabolismo , Carcinogénesis/patología , Carcinogénesis/genética , Línea Celular Tumoral , Ferroptosis/efectos de los fármacos , Lisosomas/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitinación
6.
Biochem Pharmacol ; 225: 116278, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740223

RESUMEN

Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Enfermedades Renales , Mitocondrias , Humanos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Renales/metabolismo , Enfermedades Renales/tratamiento farmacológico , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Animales , Desarrollo de Medicamentos/métodos , Calcio/metabolismo
7.
Adv Sci (Weinh) ; : e2401783, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741280

RESUMEN

Reliable fabrication of large-area perovskite films with antisolvent-free printing techniques requires high-volatility solvents, such as 2-methoxyethanol (2ME), to formulate precursor inks. However, the fabrication of high-quality cesium-formamidinium (Cs-FA) perovskites has been hampered using volatile solvents due to their poor coordination with the perovskite precursors. Here, this issue is resolved by re-formulating a 2ME-based Cs0.05FA0.95PbI3 ink using pre-synthesized single crystals as the precursor instead of the conventional mixture of raw powders. The key to obtaining high-quality Cs-FA films lies in the removal of colloidal particles from the ink and hence the suppression of colloid-induced heterogeneous nucleation, which kinetically facilitates the growth of as-formed crystals toward larger grains and improved film crystallinity. Employing the precursor-engineered volatile ink in the vacuum-free, fully printing processing of solar cells (with carbon electrode), a power conversion efficiency (PCE) of 19.3%, a T80 (80% of initial PCE) of 1000 h in ISOS-L-2I (85 °C/1 Sun) aging test and a substantially reduced bill of materials are obtained. The reliable coating methodology ultimately enables the fabrication of carbon-electrode mini solar modules with a stabilized PCE of 16.2% (average 15.6%) representing the record value among the fully printed counterparts and a key milestone toward meeting the objectives for a scalable photovoltaic technology.

8.
Pathology ; 56(4): 516-527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570266

RESUMEN

Matrix Gla protein (MGP) and trichorhinophalangeal syndrome type 1 (TRPS1) have recently emerged as novel breast-specific immunohistochemical (IHC) markers, particularly for triple-negative breast cancer (TNBC) and metaplastic carcinoma. The present study aimed to validate and compare the expression of MGP, TRPS1 and GATA binding protein 3 (GATA3) in metastatic breast carcinoma (MBC), invasive breast carcinoma (IBC) with special features, including special types of invasive breast carcinoma (IBC-STs) and invasive breast carcinoma of no special type with unique features, and mammary and non-mammary salivary gland-type tumours (SGTs). Among all enrolled cases, MGP, TRPS1 and GATA3 had comparable high positivity for ER/PR-positive (p=0.148) and HER2-positive (p=0.310) breast carcinoma (BC), while GATA3 positivity was significantly lower in TNBC (p<0.001). Similarly, the positive rates of MGP and TRPS1 in MBCs (99.4%), were higher than in GATA3 (90.9%, p<0.001). Among the IBC-STs, 98.4% of invasive lobular carcinomas (ILCs) were positive for all three markers. Among neuroendocrine tumours (NTs), all cases were positive for TRPS1 and GATA3, while MGP positivity was relatively low (81.8%, p=0.313). In the neuroendocrine carcinoma (NC) subgroup, all cases were positive for GATA3 and MGP, while one case was negative for TRPS1. All carcinomas with apocrine differentiation (APOs) were positive for GATA3 and MGP, while only 60% of the cases demonstrated moderate staining for TRPS1. Among mammary SGTs, MGP demonstrated the highest positivity (100%), followed by TRPS1 (96.0%) and GATA3 (72.0%). Positive staining for these markers was also frequently observed in non-mammary SGTs. Our findings further validate the high sensitivity of MGP and TRPS1 in MBCs, IBC-STs, and breast SGTs. However, none of these markers are capable of distinguishing between mammary and non-mammary SGTs.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Factor de Transcripción GATA3 , Proteína Gla de la Matriz , Neoplasias de las Glándulas Salivales , Factores de Transcripción , Femenino , Humanos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al ADN/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/análisis , Inmunohistoquímica , Proteínas Represoras/metabolismo , Neoplasias de las Glándulas Salivales/patología , Neoplasias de las Glándulas Salivales/diagnóstico , Neoplasias de las Glándulas Salivales/metabolismo , Sensibilidad y Especificidad , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/metabolismo
9.
Ther Drug Monit ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38531816

RESUMEN

BACKGROUND: Ibrutinib and zanubrutinib are Bruton tyrosine kinase inhibitors used to treat mantle cell lymphoma, chronic lymphocytic leukemia, and small lymphocytic lymphoma. Dihydroxydiol ibrutinib (DHI) is an active metabolite of the drug. A liquid chromatography-tandem mass spectrometry method was developed to detect ibrutinib, DHI, and zanubrutinib in human plasma. METHODS: The method involved a protein precipitation step, followed by chromatographic separation using a gradient of 10 mM ammonium acetate (containing 0.1% formic acid)-acetonitrile. Ibrutinib-d5 was used as an internal standard. Analytes were separated within 6.5 minutes. The optimized multiple reaction monitoring transitions of m/z 441.1 → 304.2, 475.2 → 304.2, 472.2 → 455.2, and 446.2 → 309.2 were selected to inspect ibrutinib, DHI, zanubrutinib, and the internal standards in positive ion mode. RESULTS: The validated curve ranges included 0.200-800, 0.500-500, and 1.00-1000 ng/mL for ibrutinib, DHI, and zanubrutinib, respectively. The precisions of the lower limit of quantification of samples were below 15.5%, the precisions of the other level samples were below 11.4%, and the accuracies were between -8.6% and 8.4%. The matrix effect and extraction recovery of all compounds ranged between 97.6%-109.0% and 93.9%-105.2%, respectively. The selectivity, accuracy, precision, matrix effect, and extraction recovery results were acceptable according to international method validation guidelines. CONCLUSIONS: A simple and rapid method was developed and validated in this study. This method was used to analyze plasma concentrations of ibrutinib and zanubrutinib in patients with mantle cell lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma, or diffuse large B-cell lymphoma. The selected patients were aged between 44 and 74 years.

10.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377137

RESUMEN

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Asunto(s)
Hemípteros , Insecticidas , Receptores Nicotínicos , Animales , Receptores Nicotínicos/genética , Insecticidas/farmacología , Hemípteros/genética , Drosophila melanogaster , Neonicotinoides/farmacología , Mutación
12.
BMJ Open ; 14(2): e079798, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365292

RESUMEN

OBJECTIVE: To investigate the prognostic impact of initial lung cancer (LC) on second primary breast cancer after LC (LC-BC) and further develop a nomogram for predicting the survival of patients. METHODS: All patients diagnosed with LC-BC and first primary BC (BC-1) during 2000-2017 were collected from Surveillance, Epidemiology, and End Results database. Pathological features, treatment strategies and survival outcomes were compared between LC-BC and BC-1 before and after propensity score matching (PSM). Cox regression analysis was performed to identify the prognostic factors associated with LC in patients with LC-BC. Additionally, least absolute shrinkage and selection operator regression analysis was used to select clinical characteristics for nomogram construction, which were subsequently evaluated using the concordance index (C-index), calibration curve and decision curve analysis (DCA). RESULTS: 827 429 patients with BC-1 and 1445 patients with LC-BC were included in the analysis. Before and after PSM, patients with BC-1 had a better prognosis than individuals with LC-BC in terms of both overall survival (OS) and breast cancer-specific survival (BCSS). Furthermore, characteristics such as more regional lymph node dissection, earlier stage and the lack of chemotherapy and radiation for LC were found to have a stronger predictive influence on LC-BC. The C-index values (OS, 0.748; BCSS, 0.818), calibration curves and DCA consistently demonstrated excellent predictive accuracy of the nomogram. CONCLUSION: In conclusion, patients with LC-BC have a poorer prognosis than those with BC-1, and LC traits can assist clinicians estimate survival of patients with LC-BC more accurately.


Asunto(s)
Neoplasias de la Mama , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias Pulmonares , Neoplasias Primarias Secundarias , Humanos , Femenino , Pronóstico , Neoplasias de la Mama/terapia , Neoplasias Pulmonares/terapia , Puntaje de Propensión , Nomogramas
13.
J Inflamm Res ; 16: 4899-4912, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927963

RESUMEN

Background: Heart failure (HF) is a common clinical syndrome due to ventricular dysfunction and is a major cause of mortality worldwide. Ferroptosis, marked by excessive iron-dependent lipid peroxidation, is closely related to HF. Therefore, the purpose of this study is to explore and validate ferroptosis-related markers in HF by bioinformatics analysis and animal experiments validation. Materials and Methods: The gene expression profiles (GSE36074) of murine transverse aortic constriction (TAC) were obtained from the Gene Expression Omnibus (GEO); From the FerrDb database, ferroptosis-related genes (FRGs) were identified. Using GEO2R, differential expressed genes (DEGs) were screened. An overlapping analysis was conducted among DEGs and FRGs to identify ferroptosis-related DEGs (FRDEGs). We then performed clustering, functional enrichment analysis, and protein-protein interaction (PPI) analyses. In addition, the key FRDEGs were extracted by cytoHubba plugin and the networks of transcription factors (TFs)-key FRDEGs and microRNA-key FRDEGs were constructed. Lastly, the key FRDEGs were carried by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemistry (IHC). Results: Fifty-nine FRGs showing significantly different expression were identified from a total of 1918 DEGs in mice heart by transverse aortic constriction. GO and KEGG functional enrichment analysis revealed that these 59 ferroptosis-related DEGs mostly associated with positive regulation of apoptotic process, FoxO signaling pathway, VEGF signaling pathway, Apoptosis, Ferroptosis. Five key FRDEGs (Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2) were identified using PPI networks; Based on TFs-key FRDEGs networks, we found that Mapk14, Hif1a, Tlr4 and Ptgs2 were regulated by 3, 4, 5, and 29 TFs, respectively; however, Ddit3 was not regulated by any TF; By analyzing the miRNA-key FRDEGs networks, we found that 39, 74, 11, 28, and 18 miRNAs targets regulate the expression of Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2, respectively. Lastly, five key FRDEGs were validated at the mRNA and protein levels by RT-qPCR and IHC, which were in line with our bioinformatics analysis. Conclusion: Our findings reveal that Mapk14, Hif1a, Ddit3, Tlr4 and Ptgs2 may be involved in the development of HF through regulating ferroptosis and as potential targets for HF.

14.
Pestic Biochem Physiol ; 196: 105635, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945266

RESUMEN

The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.


Asunto(s)
Hemípteros , Insecticidas , Animales , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Hemípteros/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Resistencia a los Insecticidas/genética , Uridina Difosfato/metabolismo
15.
Biologicals ; 84: 101717, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37801802

RESUMEN

O'nyong-nyong fever is a mosquito-borne tropical viral disease while few molecular diagnostic tools have been established for its surveillance until now. In the current study, a single-step, dual-color real-time reverse transcription polymerase chain reaction (RT-PCR) assay which contained both external quality control (EQC) and internal quality control (IQC) prepared by armored RNA technique was developed and evaluated for the detection of o'nyong-nyong virus (ONNV). Results showed that the assay was established successfully without cross-reaction with genetically related or symptom-alike diseases, which showed high specificity of the assay. The coefficient of variation of the assay was 0.97%, far less than 5%, indicating good repeatability of the assay. The lower limit of detection of the assay could reach as low as 100 copies of genome equivalent. During evaluation, the assay could correctly detect ONNV from spiked human serum samples and Anopheles species mosquito samples, while no ONNV positive was observed either from serum samples of patients with acute febrile illness or from local Anopheles species mosquitoes, suggesting no ONNV had been transmitted locally. In conclusion, the assay could potentially provide a valuable platform for ONNV molecular detection, which may improve the preparedness for future o'nyong-nyong fever outbreaks.


Asunto(s)
Anopheles , Virus O'nyong-nyong , Animales , Humanos , Virus O'nyong-nyong/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Anopheles/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacciones Cruzadas
16.
J Assist Reprod Genet ; 40(12): 2945-2950, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804378

RESUMEN

OBJECTIVE: A 32-year-old female was diagnosed with unexplained primary infertility for 10 years. She had roughly normal basal hormone levels, but her basal follicle-stimulating hormone (FSH) levels were elevated. In addition, the level of anti-Mullerian hormone was within the normal range, and she had undergone two failed oocyte collection attempts. We aimed to investigate the genetic cause of female infertility in patients with impaired ovarian folliculogenesis. METHODS: Genomic DNA was extracted from the peripheral blood of the patient and her family members. Whole-exome sequencing was performed on the patient, and TBPL2 mutations were identified and confirmed by Sanger sequencing. The Exome Aggregation Consortium (ExAC) Browser and Genome Aggregation Database (gnomAD) Browser Beta were used to search the allele frequencies of the variants in the general population. The harmfulness of the mutations was analyzed by SIFT, Mutation Taster, and CADD software. RESULT: One novel mutation, c.802C > T (p. Arg268Ter), and one known variant, c.788 + 3A > G (p. Arg233Ter), in TBPL2 were identified in the infertile family. Compound heterozygous mutations in TBPL2 may be the cause of impaired ovarian folliculogenesis, failure of superovulation, and infertility. CONCLUSIONS: We identified compound heterozygous mutations in TBPL2 that caused impaired ovarian folliculogenesis, failure of superovulation, and infertility in patients. These findings suggest an important role for compound heterozygous mutations in TBPL2 and expand the mutational spectrum of TBPL2, which might provide a new precise diagnostic marker for female infertility.


Asunto(s)
Infertilidad Femenina , Humanos , Femenino , Adulto , Infertilidad Femenina/genética , Mutación/genética , Ovario , Proteínas Nucleares/genética , Proteínas Similares a la Proteína de Unión a TATA-Box/genética
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 947-952, 2023.
Artículo en Chino | MEDLINE | ID: mdl-37718401

RESUMEN

OBJECTIVES: To study the clinical characteristics of acute pancreatitis (AP) in children. METHODS: A retrospective analysis was conducted on the children with AP who were hospitalized in the First Affiliated Hospital of Zhengzhou University from January 2020 to June 2022, and their clinical characteristics were summarized and analyzed. RESULTS: A total of 92 children with AP were included, with a male/female ratio of 1:1 and a mean age of (9±4) years. Adolescents (34%, 31/92) and pre-school children (33%, 30/92) were more commonly affected, while infants and toddlers (7%, 6/92) were less commonly affected. The etiology of the disease from most to least was as follows: drug-induced (40%, 37/92), biliary (18%, 17/92), dietary (14%, 13/92), idiopathic (13%, 12/92), trauma-related (9%, 8/92), and infectious (5%, 5/92). Mild, moderate, and severe AP accounted for 68% (63/92), 21% (19/92), and 11% (10/92), respectively. Among all 92 children, 62 (67%) received abdominal ultrasound, with a positive rate of 66% (41/62); 67 (73%) underwent abdominal CT, with a positive rate of 90% (60/67); 20 (22%) underwent magnetic resonance cholangiopancreatography (MRCP), with a positive rate of 95% (19/20). There were significant differences in the levels of D-dimer, procalcitonin, and amylase among children with different degrees of severity of the condition (P<0.05), and there were significant differences in the levels of leukocyte count, hematocrit, blood urea nitrogen, albumin, and blood calcium among children with different etiologies (P<0.05). Of all 92 children, 89 (97%) had a good prognosis. CONCLUSIONS: The primary cause of pediatric AP is medication-induced, with a predominantce of mild cases. Abdominal CT has a high rate of utilization and positivity in the diagnosis of pediatric AP, while MRCP has the highest specificity among imaging techniques. Laboratory tests aid in determining the severity and etiology of AP. The prognosis of AP is favorable in children.

18.
Microsc Microanal ; 29(3): 1047-1061, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749677

RESUMEN

Nanoscale materials characterization often uses highly energetic probes which can rapidly damage beam-sensitive materials, such as hybrid organic-inorganic compounds. Reducing the probe dose minimizes the damage, but often at the cost of lower signal-to-noise ratio (SNR) in the acquired data. This work reports the optimization and validation of principal component analysis (PCA) and nonnegative matrix factorization for the postprocessing of low-dose nanoscale characterization data. PCA is found to be the best approach for data denoising. However, the popular scree plot-based method for separation of principal and noise components results in inaccurate or excessively noisy models of the heterogeneous original data, even after Poissonian noise weighting. Manual separation of principal and noise components produces a denoised model which more accurately reproduces physical features present in the raw data while improving SNR by an order of magnitude. However, manual selection is time-consuming and potentially subjective. To suppress these disadvantages, a deep learning-based component classification method is proposed. The neural network model can examine PCA components and automatically classify them with an accuracy of >99% and a rate of ∼2 component/s. Together, multivariate analysis and deep learning enable a deeper analysis of nanoscale materials' characterization, allowing as much information as possible to be extracted.

19.
Pestic Biochem Physiol ; 194: 105469, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532310

RESUMEN

Bemisia tabaci (Hemiptera: Gennadius) is a notorious pest that is capable of feeding on >600 kinds of agricultural crops. Imidacloprid is critical in managing pest with sucking mouthparts, such as B. tabaci. However, the field population of B. tabaci has evolved resistance because of insecticide overuse. The overexpression of the detoxification enzyme cytochrome P450 monooxygenase is considered the main mechanism of imidacloprid resistance, but the mechanism underlying gene regulation remains unclear. MicroRNAs are a type of endogenous small molecule compounds that is fundamental in regulating gene expression at the post-transcriptional level. Whether miRNAs are related to the imidacloprid resistance of B. tabaci remains unknown. To gain deep insight into imidacloprid resistance, we conducted on miRNAs expression profiling of two B. tabaci Mediterranean (MED) strains with 19-fold resistance through deep sequencing of small RNAs. A total of 8 known and 1591 novel miRNAs were identified. In addition, 16 miRNAs showed significant difference in expression levels between the two strains, as verified by quantitative reverse transcription PCR. Among these, novel_miR-376, 1517, and 1136 significantly expressed at low levels in resistant samples, decreasing by 36.9%, 60.2%, and 15.6%, respectively. Moreover, modulating novel_miR-1517 expression by feeding with 1517 inhibitor and 1517 mimic significantly affected B. tabaci imidacloprid susceptibility by regulating CYP6CM1 expression. In this article, miRNAs related to imidacloprid resistance of B. tabaci were systematically screened and identified, providing important information for the miRNA-based technological innovation for this pest management.


Asunto(s)
Hemípteros , Insecticidas , MicroARNs , Animales , Hemípteros/metabolismo , Resistencia a los Insecticidas/genética , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , MicroARNs/genética
20.
J Assist Reprod Genet ; 40(10): 2493-2498, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37574498

RESUMEN

PURPOSE: Non-obstructive azoospermia (NOA) is an essential cause of male infertility for which treatment options are limited. The pathogenic mechanism of NOA, especially idiopathic NOA, remains unclear. Gene variations are associated with the occurrence of NOA. Our study was performed to investigate the genetic causes of NOA. METHODS: Whole exome sequencing (WES) was performed in two probands diagnosed with NOA from a Chinese family. Sanger sequencing was applied to verify the pathogenic variants. A minigene assay was carried out to identify the effect of the splicing variants. RESULTS: We detected a novel homozygous variant (c.2681-3 T > A) in the HFM1 gene in the two siblings diagnosed with NOA, and their parents carried heterozygous mutations in the same gene. The results of the minigene assay revealed this splicing variant results in exon25 of HFM1 being skipped, leading to a protein truncation (p.Trp894Cysfs*44). CONCLUSION: Our results showed that a deleterious splicing variant in HFM1 was related to NOA in these two patients. This novel variant of HFM1 may serve as a potential genetic biomarker for NOA patients.


Asunto(s)
Azoospermia , Infertilidad Masculina , Humanos , Masculino , Azoospermia/patología , Infertilidad Masculina/genética , Mutación/genética , Meiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA