Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(11): 17480-17493, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381480

RESUMEN

Coherent optical links are becoming increasingly attractive for intra-data center applications as data rates scale. Realizing the era of high-volume short-reach coherent links will require substantial improvements in transceiver cost and power efficiency, necessitating a reassessment of conventional architectures best-suited for longer-reach links and a review of assumptions for shorter-reach implementations. In this work, we analyze the impact of integrated semiconductor optical amplifiers (SOAs) on link performance and power consumption, and describe the optimal design spaces for low-cost and energy-efficient coherent links. Placing SOAs after the modulator provide the most energy-efficient link budget improvement, up to 6 pJ/bit for large link budgets, despite any penalties from nonlinear impairments. Increased robustness to SOA nonlinearities makes QPSK-based coherent links especially attractive, and larger supported link budgets enable the inclusion of optical switches, which could revolutionize data center networks and improve overall energy efficiency.

2.
J Hazard Mater ; 402: 123573, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32738785

RESUMEN

The viscose fiber production process is accompanied by the accumulation of pulp-impregnated effluent (PIE), including hemicellulose and large amounts of alkali, and discharge of PIE will cause environment pollution. This paper aims to relieve the inhibition of high concentration of alkali on xylose production from hydrolysis of hemicellulose in PIE. Based on the fact that solid acid uses H+ at the acid sites to exchange with cations in PIE and can be recycled, a two-step method including an extra pretreatment process before pre-hydrolysis (SPP) is proposed. After the alkali was removed by the H+ dissociated from solid acid in the extra pretreatment process, the pH of PIE dropped from 14 to 4, and the content of Na+ and proteins was reduced by 99.13 % and 78.51 %, respectively. After SPP, the polymerization degree of the hemicellulose decreased by 73.4 %, and the subsequent enzymatic hydrolysis process was promoted. Finally, the xylose yield of SPP followed by enzymatic hydrolysis reached 57.15 g/L, which was 145.38 % more than that of enzymatic hydrolysis alone. The load of a downstream ion purification procedure was relieved compared to that of inorganic acid hydrolysis. The development of SPP contributes to the resource utilization of high alkali concentration wastewater.


Asunto(s)
Álcalis , Xilosa , Hidrólisis , Polisacáridos
3.
ACS Nano ; 14(7): 8958-8968, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32667192

RESUMEN

Recently, unconventional bright magnetic dipole (MD) radiation was observed from two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs). According to commonly accepted HOIP band structure calculations, such MD light emission from the ground-state exciton should be strictly symmetry forbidden. These results suggest that MD emission arises in conjunction with an as-yet unidentified symmetry-breaking mechanism. In this paper, we show that MD light emission originates from a self-trapped p-like exciton stabilized at energies below the primary electric dipole (ED)-emitting 1s exciton. Using suitable combinations of sample and collection geometries, we isolate the distinct temperature-dependent properties of the ED and MD photoluminescence (PL). We show that the ED emission wavelength is nearly constant with temperature, whereas the MD emission wavelength exhibits substantial red shifts with heating. To explain these results, we derive a microscopic model comprising two distinct parity exciton states coupled to lattice distortions. The model explains many experimental observations, including the thermal red shift, the difference in emission wavelengths, and the relative intensities of the ED and MD emission. Thermodynamic analysis of temperature-dependent PL reveals that the MD emission originates from a locally distorted structure. Finally, we demonstrate unusual hysteresis effects of the MD-emitting state near structural phase transitions. We hypothesize that this is another manifestation of the local distortions, indicating that they are insensitive to phase changes in the equilibrium lattice structure.

4.
Sci Adv ; 6(6): eaay4900, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32083181

RESUMEN

Light-matter interactions in semiconductors are uniformly treated within the electric dipole approximation; multipolar interactions are considered "forbidden." We experimentally demonstrate that this approximation inadequately describes light emission in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs), solution processable semiconductors with promising optoelectronic properties. By exploiting the highly oriented crystal structure, we use energy-momentum spectroscopies to demonstrate that an exciton-like sideband in 2D HOIPs exhibits a multipolar radiation pattern with highly directed emission. Electromagnetic and quantum-mechanical analyses indicate that this emission originates from an out-of-plane magnetic dipole transition arising from the 2D character of electronic states. Symmetry arguments and temperature-dependent measurements suggest a dynamic symmetry-breaking mechanism that is active over a broad temperature range. These results challenge the paradigm of electric dipole-dominated light-matter interactions in optoelectronic materials, provide new perspectives on the origins of unexpected sideband emission in HOIPs, and tease the possibility of metamaterial-like scattering phenomena at the quantum-mechanical level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA