Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(2)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-38973762

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.

2.
Small Methods ; : e2301504, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38148311

RESUMEN

Developing efficient oxygen evolution reaction (OER) electrocatalysts can greatly advance the commercialization of proton exchange membrane (PEM) water electrolysis. However, the unclear and disputed reaction mechanism and structure-activity relationship of OER pose significant obstacles. Herein, the active site and intermediate for OER on AuIr nanoalloys are simultaneously identified and correlated with the activity, through the integration of in situ shell-isolated nanoparticle-enhanced Raman spectroscopy and X-ray absorption spectroscopy. The AuIr nanoalloys display excellent OER performance with an overpotential of only 246 mV to achieve 10 mA cm-2 and long-term stability under strong acidic conditions. Direct spectroscopic evidence demonstrates that * OO adsorbed on IrOx sites is the key intermediate for OER, and it is generated through the O-O coupling of adsorbed oxygen species directly from water, providing clear support for the adsorbate evolution mechanism. Moreover, the Raman information of the * OO intermediate can serve as a universal "in situ descriptor" that can be obtained both experimentally and theoretically to accelerate the catalyst design. It unveils that weakening the interactions of * OO on the catalysts and facilitating its desorption would boost the OER performance. This work deepens the mechanistic understandings on OER and provides insightful guidance for the design of more efficient OER catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA