Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 252, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010053

RESUMEN

Sodium-glucose cotransporter type 2 inhibitors (SGLT2i) were initially recommended as oral anti-diabetic drugs to treat type 2 diabetes (T2D), by inhibiting SGLT2 in proximal tubule and reduce renal reabsorption of sodium and glucose. While many clinical trials demonstrated the tremendous potential of SGLT2i for cardiovascular diseases. 2022 AHA/ACC/HFSA guideline first emphasized that SGLT2i were the only drug class that can cover the entire management of heart failure (HF) from prevention to treatment. Subsequently, the antiarrhythmic properties of SGLT2i have also attracted attention. Although there are currently no prospective studies specifically on the anti-arrhythmic effects of SGLT2i. We provide clues from clinical and fundamental researches to identify its antiarrhythmic effects, reviewing the evidences and mechanism for the SGLT2i antiarrhythmic effects and establishing a novel paradigm involving intracellular sodium, metabolism and autophagy to investigate the potential mechanisms of SGLT2i in mitigating arrhythmias.


Asunto(s)
Antiarrítmicos , Arritmias Cardíacas , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Humanos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Antiarrítmicos/uso terapéutico , Antiarrítmicos/efectos adversos , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Arritmias Cardíacas/metabolismo , Resultado del Tratamiento , Frecuencia Cardíaca/efectos de los fármacos , Autofagia/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Potenciales de Acción/efectos de los fármacos , Sodio/metabolismo
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220174, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122214

RESUMEN

Atrial fibrillation (AF) is a very common cardiac arrhythmia with an estimated prevalence of 33.5 million patients globally. It is associated with an increased risk of death, stroke and peripheral embolism. Although genetic studies have identified a growing number of genes associated with AF, the definitive impact of these genetic findings is yet to be established. Several mechanisms, including electrical, structural and neural remodelling of atrial tissue, have been proposed to contribute to the development of AF. Despite over a century of exploration, the molecular and cellular mechanisms underlying AF have not been fully established. Current antiarrhythmic drugs are associated with a significant rate of adverse events and management of AF using ablation is not optimal, especially in cases of persistent AF. This review discusses recent advances in our understanding and management of AF, including new concepts of epidemiology, genetics and pathophysiological mechanisms. We review the current status of antiarrhythmic drug therapy for AF, new potential agents, as well as mechanism-based AF ablation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Investigación Biomédica Traslacional , Antiarrítmicos/uso terapéutico , Frecuencia Cardíaca
3.
Front Physiol ; 12: 700129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335306

RESUMEN

Intestine is composed of various types of cells including absorptive epithelial cells, goblet cells, endocrine cells, Paneth cells, immunological cells, and so on, which play digestion, absorption, neuroendocrine, immunological function. Intestine is innervated with extrinsic autonomic nerves and intrinsic enteric nerves. The neurotransmitters and counterpart receptors are widely distributed in the different intestinal cells. Intestinal autonomic nerve system includes sympathetic and parasympathetic nervous systems, which regulate cellular proliferation and function in intestine under physiological and pathophysiological conditions. Presently, distribution and functional characteristics of autonomic nervous system in intestine were reviewed. How autonomic nervous system regulates intestinal cell proliferation was discussed. Function of autonomic nervous system on intestinal diseases was extensively reviewed. It might be helpful to properly manipulate autonomic nervous system during treating different intestinal diseases.

4.
J Cell Physiol ; 235(4): 3646-3656, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31559639

RESUMEN

It is well known that exposure of double-stranded RNA (dsRNA) to intestine immediately induces villus damage with severe diarrhea, which is mediated by toll-like receptor 3 signaling activation. However, the role of intestinal stem cells (ISCs) remains obscure during the pathology. In the present study, polyinosinic-polycytidylic acid (poly[I:C]), mimicking viral dsRNA, was used to establish intestinal damage model. Mice were acutely and chronically exposed to poly(I:C), and ISCs in jejunum were analyzed. The results showed that the height of villus was shorter 48 hr after acute poly(I:C) exposure compared with that of controls, while chronic poly(I:C) treatment increased both villus height and crypt depth in jejunum compared with control animals. The numbers of ISCs in jejunum were significantly increased after acute and chronic poly(I:C) exposure. Poly (I:C)-stimulated ISCs have stronger capacities to differentiate into intestine endocrine cells. Mechanistically, poly(I:C) treatment increased expression of Stat1 and Axin2 in the intestinal crypt, which was along with increased expression of Myc, Bcl2, and ISC proliferation. These findings suggest that dsRNA exposure could induce ISC proliferation to ameliorate dsRNA-induced intestinal injury.


Asunto(s)
Mucosa Intestinal/crecimiento & desarrollo , Poli I-C/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Células Madre/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteína Axina/genética , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/crecimiento & desarrollo , Ratones , ARN Bicatenario/efectos de los fármacos , Factor de Transcripción STAT1/genética , Transducción de Señal , Receptor Toll-Like 3/genética
5.
BMC Cancer ; 8: 38, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18237408

RESUMEN

BACKGROUND: Osteopontin (OPN) is associated with human cancers, and circulating blood OPN may have diagnostic or prognostic value in clinical oncology. METHODS: To evaluate OPN as a cancer biomarker, we generated and characterized five novel mouse monoclonal antibodies against the human full-length OPN (fl-OPN). Epitopes recognized by four antibodies (2C5, 2F10, 2H9, and 2E11) map to N-terminal OPN (aa1-166); one (1F11) maps to C-terminal OPN (aa167-314). These antibodies recognize recombinant and native OPN by ELISA and immunoblot, cross reacting with human and mouse OPN. Two of these novel antibodies (2F10 and 1F11) were used to develop a quantitative enzyme linked immunosorbent assay (ELISA) for fl-OPN. RESULTS: In comparison with commercially available ELISAs, our assay had high accuracy in measuring fl-OPN standards, and high sensitivity. Specifically, our ELISA has a linear dose response between 0.078 ng/ml-10 ng/ml, with a sensitivity of 13.9 pg/ml. We utilized this assay to quantify fl-OPN in the plasma of healthy volunteers in comparison with patients with metastatic breast cancer. The average circulating plasma fl-OPN in healthy volunteers was 1.2 ng/ml, compared to 4.76 ng/ml in patients with metastatic breast cancer (p = 0.0042). Although the increase in fl-OPN in cancer patients is consistent with previous studies, the measured quantity varied greatly between all existing fl-OPN ELISAs. CONCLUSION: Because OPN is a complex molecule with diversity from alternative splicing, post-translational modification, extracellular proteolytic modification, and participation in protein complexes, we suggest that further understanding of specific isoform recognition of multiple OPN species is essential for future studies of OPN biomarker utility.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Neoplasias de la Mama/diagnóstico , Carcinoma Ductal/diagnóstico , Carcinoma Lobular/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Osteopontina/análisis , Osteopontina/inmunología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Afinidad de Anticuerpos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/inmunología , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Carcinoma Ductal/sangre , Carcinoma Ductal/patología , Carcinoma Lobular/sangre , Carcinoma Lobular/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Osteopontina/sangre , Fragmentos de Péptidos/inmunología , Juego de Reactivos para Diagnóstico , Sensibilidad y Especificidad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA