Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Microbiol ; 15: 1422202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903796

RESUMEN

Background: Salmonella enteritidis (S. enteritidis), a zoonotic pathogen with a broad host range, presents a substantial threat to global public health safety. Vaccination stands as an effective strategy for the prevention and control of S. enteritidis infection, highlighting an immediate clinical need for the creation of safe and efficient attenuated live vaccines. Methods: In this study, a S. enteritidis peptidoglycan-associated lipoprotein (pal) gene deletion strain (Δpal), was constructed. To assess its virulence, we conducted experiments on biofilm formation capability, motility, as well as cell and mouse infection. Subsequently, we evaluated the immune-protective effect of Δpal. Results: It was discovered that deletion of the pal gene reduced the biofilm formation capability and motility of S. enteritidis. Cell infection experiments revealed that the Δpal strain exhibited significantly decreased abilities in invasion, adhesion, and intracellular survival, with downregulation of virulence gene expression, including mgtC, invH, spvB, sipA, sipB, ssaV, csgA, and pipB. Mouse infection experiments showed that the LD50 of Δpal increased by 104 times, and its colonization ability in mouse tissue organs was significantly reduced. The results indicated that the pal gene severely affected the virulence of S. enteritidis. Further, immunogenicity evaluation of Δpal showed a significant enhancement in the lymphocyte transformation proliferation capability of immunized mice, producing high titers of specific IgG and IgA, suggesting that Δpal possesses good immunogenicity. Challenge protection tests demonstrated that the strain could provide 100% immune protection against wild-type strains in mice. Discussion: This study proves that the pal gene influences the virulence of S. enteritidis, and Δpal could serve as a candidate strain for attenuated live vaccines, laying the foundation for the development of attenuated live vaccines against Salmonella.

2.
Dalton Trans ; 53(3): 1336-1345, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38124686

RESUMEN

This study focused on the design and synthesis of two Cu-based coordination polymers, [Cu2(4-dpye)(5-HSIP)(µ3-O)(H2O)2]·3H2O (Cu-CP-1) and [Cu(4-dpye)0.5(BCA)2] (Cu-CP-2), where 4-dpye = N,N'-bis(4-pyridinecarboxamide)-1,2-ethane, 5-H3SIP = 5-sulfoisophthalic acid, and HBCA = benzoic acid, by using a hydrothermal method. Single-crystal X-ray diffraction (SCXRD) study revealed that by adding various auxiliary ligands, the architectures of the Cu-CPs could be altered, yielding two distinct multinuclear Cu clusters. Moreover, the Cu-CPs can be used as urease inhibitors (UIs). In vitro experiments showed that the Cu-CPs had good urease inhibition effects with IC50 values of 0.53 ± 0.01 µM for Cu-CP-1 and 1.44 ± 0.01 µM for Cu-CP-2 and 98.48% (Cu-CP-1) and 96.27% (Cu-CP-2) inhibition of urease was achieved at a concentration of 100 µM, respectively. Furthermore, the inhibition effect of the tetranuclear Cu-CP was better than that of the binuclear Cu-CP. To better understand the potential mechanism of inhibition of the two copper complexes, we performed kinetic analysis using Lineweaver-Burk (L-B) plots in the presence of different concentrations of urea and different concentrations of inhibitors, and both Cu-CP-1 and Cu-CP-2 showed a non-competitive mode of inhibition. In addition, molecular docking analysis showed that the Cu-CPs were able to enter well into the urease binding pocket, thus interacting with key amino acid residues of urease to different degrees. Both kinetic and molecular docking studies theoretically explain and demonstrate the inhibition effect of both Cu-CPs on urease activity in vitro, which is expected to provide reasonable guidance and effective strategies for the development of novel, efficient, stable and safe CP-based UIs.


Asunto(s)
Cobre , Ureasa , Cobre/farmacología , Cobre/química , Simulación del Acoplamiento Molecular , Cinética , Cristalografía por Rayos X
3.
Int J Gen Med ; 16: 4537-4548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818108

RESUMEN

Objective: The incidence of cardiogenic shock cases treated with veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support has been on the rise. Acute kidney injury (AKI) is a significant complication of cardiogenic shock and a frequent serious complication in patients requiring ECMO-supported therapy. AKI is strongly associated with unfavorable patient prognosis. However, there is a paucity of data on the influence of AKI on the prognosis of patients with acute myocardial infarction complicated by cardiogenic shock (AMI-CS) who are receiving ECMO support, particularly with regard to long-term outcomes. Methods: This retrospective observational study included 103 patients in the People's Hospital of Guangxi Zhuang Autonomous Region from January 2017 and June 2022. AKI was defined according to Kidney Disease Improving Global Outcome (KDIGO) criteria. Cox regression and logistic regression were used to identify risk factors. Results: In this study, the incidence of AKI was 63.11%, with AKI stage 1, 2, and 3 accounting for 21.36%, 12.62%, and 29.13%, respectively. Patients with severe AKI had significantly higher in-hospital mortality (43.33% vs 27.40%, P < 0.001), 30-day mortality (60.00% vs 31.51%, P = 0.001), and 1-year mortality (63.67% vs 34.25%, P<0.001) than those without severe AKI. Furthermore, severe AKI significantly increased the risk of one-year mortality (HR 10.816, CI 3.118-37.512, P<0.001). Baseline serum creatinine, baseline platelet, and active cardiopulmonary resuscitation were independent predictors of one-year mortality. In addition, baseline white blood cell count, baseline aspartate aminotransferase, baseline alanine aminotransferase (ALT), baseline serum creatinine, preoperative lactate, and postoperative mean arterial pressure were independent risk factors of severe AKI during hospitalization. Conclusion: In patients with AMI-CS receiving ECMO support, AKI is highly prevalent. Development of severe AKI significantly increased the risk of one-year mortality.

4.
Dalton Trans ; 52(40): 14329-14337, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37540017

RESUMEN

Urease inhibitors (UIs) and nitrification inhibitors (NIs) can greatly reduce nitrogen loss in agriculture soil. However, design and synthesis of an efficient and environmentally friendly dual-functional inhibitor is still a great challenge. Herein, four metal-organic salts (MOSs) based on heterogeneous conformations of the ligand N1,N1,N2,N2-tetrakis(2-fluorobenzyl)ethane-1,2-diamine (L), namely, [2HL]2+·[MCl4]2- (M = Cu, Zn, Cd, and Co), have been synthesized by the "second sphere" coordination method and structurally characterized in detail. Single crystal X-ray diffraction (SCXRD) analyses reveal that the four MOSs are 0D supramolecular structures containing [2HL]2+ and [MCl4]2-, which are connected through non-covalent bonds. Furthermore, the urease and nitrification inhibitory activities of MOSs are evaluated, showing excellent nitrification inhibitory activity with the nitrification inhibitory rate as high as 70.57% on the 28th day in soil cultivation experiment. In particular, MOS 1 shows significant urease inhibitory activity with half maximal inhibitory concentration (IC50) values of 0.89 ± 0.01 µM (0.5 h) and 1.87 ± 0.01 µM (3 h), which can serve as a dual-functional inhibitor.

5.
J Colloid Interface Sci ; 646: 107-117, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187044

RESUMEN

The efficient heterogeneous photo-Fenton-like catalysts based on two secondary ligand-induced Cu(II) metal-organic frameworks (Cu-MOF-1 and Cu-MOF-2) were constructed for the first time and investigated for the degradation of multiple antibiotics. Herein, two novel Cu-MOFs were prepared using mixed ligands by a facile hydrothermal method. The one-dimensional (1D) nanotube-like structure could be obtained by using V-shaped, long and rigid 4,4'-bis(3-pyridylformamide)diphenylether (3-padpe) ligand in Cu-MOF-1, while polynuclear Cu cluster could be prepared more easily by using short and small isonicotinic acid (HIA) ligand in Cu-MOF-2. Their photocatalytic performances were measured by degradation of multiple antibiotics in Fenton-like system. Comparatively, Cu-MOF-2 exhibited superior photo-Fenton-like performance under visible light irradiation. The outstanding catalytic performance of Cu-MOF-2 was ascribed to the tetranuclear Cu cluster configuration and excellent ability of photoinduced charge transfer and hole separation thus improved the photo-Fenton activity. In addition, Cu-MOF-2 showed high photo-Fenton activity in wide pH working range 3-10 and maintained wonderful stability after five cyclic experiments. The degradation intermediates and pathways were deeply studied. The main active species h+, O2- and OH worked together in photo-Fenton-like system and possible degradation mechanism was proposed. This study provided a new approach to design the Cu-based MOFs Fenton-like catalysts.

6.
BMC Nephrol ; 24(1): 81, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997848

RESUMEN

OBJECTIVE: Acute kidney injury (AKI) is one of the most frequent complications in patients treated with extracorporeal membrane oxygenation (ECMO) support. The aim of this study was to investigate the risk factors of AKI in patients undergoing ECMO support. METHODS: We performed a retrospective cohort study which included 84 patients treated with ECMO support at intensive care unit in the People's Hospital of Guangxi Zhuang Autonomous Region from June 2019 to December 2020. AKI was defined as per the standard definition proposed by the Kidney Disease Improving Global Outcome (KDIGO). Independent risk factors for AKI were evaluated through multivariable logistic regression analysis with stepwise backward approach. RESULTS: Among the 84 adult patients, 53.6% presented AKI within 48 h after initiation of ECMO support. Three independent risk factors of AKI were identified. The final logistic regression model included: left ventricular ejection fraction (LVEF) before ECMO initiation (OR, 0.80; 95% CI, 0.70-0.90), sequential organ failure assessment (SOFA) score before ECMO initiation (OR, 1.41; 95% CI, 1.16-1.71), and serum lactate at 24 h after ECMO initiation (OR, 1.27; 95% CI, 1.09-1.47). The area under receiver operating characteristics of the model was 0.879. CONCLUSION: Severity of underlying disease, cardiac dysfunction before ECMO initiation and the blood lactate level at 24 h after ECMO initiation were independent risk factors of AKI in patients who received ECMO support.


Asunto(s)
Lesión Renal Aguda , Oxigenación por Membrana Extracorpórea , Adulto , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda , China/epidemiología , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/terapia , Lesión Renal Aguda/etiología , Factores de Riesgo , Lactatos
7.
J Surg Res ; 187(2): 596-604, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24331940

RESUMEN

BACKGROUND: Mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways are pleiotropic regulator of many genes involved in lipopolysaccharide (LPS)-induced acute lung injury (ALI). The present study aimed to reveal the protective effect of isotetrandrine (ITD), a small molecule inhibitor, on various aspects of LPS-induced inflammation in vitro and in vivo. METHODS: In vitro, RAW 264.7 cells were pretreated with different dose of ITD 1 h before treatment with 1 mg/L of LPS. In vivo, to induce ALI, male BALB/c mice were injected intranasally with LPS and treated with ITD (20 and 40 mg/kg) 1 h before LPS. RESULTS: In vitro, the cytokine levels of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 in supernatant were reduced by ITD. Meanwhile, in vivo, pulmonary inflammatory cell infiltration, myeloperoxidase activity, total cells, neutrophils, macrophages, along with the levels of tumor necrosis factor-α, IL-1ß, and IL-6 in bronchoalveolar lavage fluid were dose-dependently attenuated by ITD. Furthermore, our data showed that ITD significantly inhibited the activation of MAPK and NF-κB, which are induced by LPS in ALI model. CONCLUSIONS: These results suggested that ITD dose-dependently suppressed the severity of LPS-induced ALI by inactivation of MAPK and NF-κB, which may involve the inhibition of tissue oxidative injury and pulmonary inflammatory process.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Bencilisoquinolinas/farmacología , Inmunosupresores/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Animales , Bencilisoquinolinas/química , Líquido del Lavado Bronquioalveolar , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inmunosupresores/química , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Peroxidasa/metabolismo , Edema Pulmonar/inducido químicamente , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA