Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
Discov Oncol ; 15(1): 212, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836972

RESUMEN

BACKGROUND: Liquid biopsies, for example, exosomal circular RNA (circRNA) can be used to assess potential predictive markers for hepatocellular carcinoma (HCC) in patients after curative resection. This study aimed to search for effective prognostic biomarkers for HCC in patients after surgical resection based on exosomal circRNA expression profiles. We developed two nomograms incorporating circRNAs to predict the postoperative recurrence-free survival (RFS) and overall survival (OS) of HCC patients. METHOD: Plasma exosomes isolated from HCC patients and healthy individuals were used for circRNA microarray analysis to explore differentially expressed circRNAs. Pearson correlation analysis was used to evaluate the correlation between circRNAs and clinicopathological features. Cox regression analysis was used to explore the correlation between circRNA and postoperative survival time as well as recurrence time. A nomogram based on circRNA and clinicopathological characteristics was established and further evaluated to predict prognosis and recurrence. RESULT: Among 60 significantly upregulated circRNAs and 25 downregulated circRNAs, hsa_circ_0029325 was selected to verify its power for predicting HCC outcomes. The high expression level of exosomal hsa_circ_0029325 was significantly correlated with OS (P = 0.001, HR = 2.04, 95% CI 1.41-3.32) and RFS (P = 0.009, HR = 1.62, 95% CI 1.14-2.30). Among 273 HCC patients, multivariate regression analysis showed that hsa_circ_0029325 (HR = 1.96, 95% CI 1.21-3.18), tumor size (HR = 2.11, 95% CI 1.33-3.32), clinical staging (HR = 2.31, 95% CI 1.54-3.48), and tumor thrombus (HR = 1.74, 95% CI 1.12-2.7) were independent risk factors for poor prognosis in HCC patients after radical resection. These independent predictors of prognosis were incorporated into the two nomograms. The AUCs under the 1-year, 3-year, and 5-year survival and recurrence curves of the OS and RFS nomograms were 0.755, 0.749, and 0.742 and 0.702, 0.685, and 0.642, respectively. The C-index, calibration curves, and clinical decision curves showed that the two prediction models had good predictive performance. These results were verified in the validation cohort with 90 HCC patients. CONCLUSION: Our study established two reliable nomograms for predicting recurrence and prognosis in HCC patients. We also show that it is feasible to screen potential predictive markers for HCC after curative resection through exosomal circRNA expression profile analysis.

2.
Chemotherapy ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763139

RESUMEN

INTRODUCTION: Abnormalities in splicing factors, such as mutations or deregulated expression, can lead to aberrant splicing of target genes, potentially contributing to the pathogenesis of acute myeloid leukemia (AML). Despite this, the precise mechanism underlying the abnormal alternative splicing induced by SRSF1, a splicing factor associated with poor AML prognosis, remains elusive. METHODS: Using strict splicing criteria, we globally screened for alternative splicing(AS) events in NPMc-positive and NPMc-negative AML samples from TCGA. An AS network associated with AML prognosis was then established. Functional assays, including CCK-8, flow cytometry, and Western blot, were conducted on K562 and THP-1 cells overexpressing SRSF1. Cell viability following 72-hour Omipalisib treatment was also assessed. To explore the mechanism of SRSF1-induced AS, we created a BCL2L11 miniGene with a site-specific mutation at its branch point. The AS patterns of both wild-type and mutant miniGenes were analyzed following SRSF1 overexpression in HEK-293T, along with the subcellular localization of different spliceosomes. RESULTS: SRSF1 was significantly associated with AML prognosis. Notably, its expression was markedly upregulated in refractory AML patients compared to those with a favorable chemotherapy response. Overexpression of SRSF1 promoted THP-1 cell proliferation, suppressed apoptosis, and reduced sensitivity to Omipalisib. Mechanistically, SRSF1 recognized an aberrant branch point within the BCL2L11 intron, promoting the inclusion of a cryptic exon 3, which in turn led to apoptosis arrest. CONCLUSIONS: Overexpression of SRSF1 and the resulting abnormal splicing of BCL2L11 are associated with drug resistance and poor prognosis in AML.

3.
J Adv Res ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740259

RESUMEN

BACKGROUND: Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW: We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.

4.
Front Plant Sci ; 15: 1389864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812734

RESUMEN

Purpose: The large-scale planting of potatoes leads to soil degradation, thus limiting the potato yield. An effective method of improving soil quality involves the combined application of biochar and organic fertilizer. However, the proportion of biochar and organic fertilizer at which potato yield can be improved, as well as the improvement mechanism, remain unclear. Methods: A combined application experiment involving biochar (B) and organic fertilizer (O) with four concentration gradients was conducted using the equal carbon ratio method. On this basis, rhizosphere soil fertility, bacterial community composition, and bacterial diversity in potato crops, as well as the potato yield difference under different combined application ratios, were investigated. Then, the direct and indirect effects of these factors on potato yield were analyzed. Results: The results suggest that soil fertility was improved by the combined application of biochar and organic fertilizer, with the best effect being achieved at a ratio of B:O=1:2. The dominant bacterial communities in the potato rhizosphere included Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes. When compared to the control, the relative abundance and diversity index of soil bacteria were significantly improved by the treatment at B:O=1:2, which exerted a stronger effect on improving the relative abundance of beneficial bacteria. Soil available phosphorus (AP), soil pH (SpH), and soil organic carbon (SOC) explained 47.52% of the variation in bacterial composition. Among them, the main factor was the content of soil available nutrients, while SpH generated the weakest effect. The bacterial diversity index showed a significant positive correlation with soil AP, SOC, available potassium (AK), total nitrogen (TN), and C/N ratio, and a significant negative correlation with SpH. Bacterial diversity directly affected the potato yield, while soil fertility indirectly affected potato yield by influencing the soil bacterial diversity. Conclusion: The combined application of biochar and organic fertilizer elevates potato yield mainly by improving the diversity of bacterial communities in potato rhizosphere soil, especially the combined application of biochar and organic fertilizer at a 1:2 ratio (biochar 0.66 t ha-1+organic fertilizer 4.46 t ha-1), which made the largest contribution to increasing potato yield.

5.
Cell Mol Biol Lett ; 29(1): 81, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816685

RESUMEN

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.


Asunto(s)
Células Dendríticas , Sepsis , Células Dendríticas/inmunología , Sepsis/inmunología , Sepsis/patología , Humanos , Animales , Muerte Celular Regulada , Autofagia , Apoptosis , Piroptosis
6.
Nat Commun ; 15(1): 4643, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821959

RESUMEN

Silk nanofibrils (SNFs), the fundamental building blocks of silk fibers, endow them with exceptional properties. However, the intricate mechanism governing SNF assembly, a process involving both protein conformational transitions and protein molecule conjunctions, remains elusive. This lack of understanding has hindered the development of artificial silk spinning techniques. In this study, we address this challenge by employing a graphene plasmonic infrared sensor in conjunction with multi-scale molecular dynamics (MD). This unique approach allows us to probe the secondary structure of nanoscale assembly intermediates (0.8-6.2 nm) and their morphological evolution. It also provides insights into the dynamics of silk fibroin (SF) over extended molecular timeframes. Our novel findings reveal that amorphous SFs undergo a conformational transition towards ß-sheet-rich oligomers on graphene. These oligomers then connect to evolve into SNFs. These insights provide a comprehensive picture of SNF assembly, paving the way for advancements in biomimetic silk spinning.

7.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792147

RESUMEN

The organization of modifiable and functional building components into various superstructures is of great interest due to their broad applications. Supramolecular self-assembly, based on rationally designed building blocks and appropriately utilized driving forces, is a promising and widely used strategy for constructing superstructures with well-defined nanostructures and diverse morphologies across multiple length scales. In this study, two homogeneous organohydrogels with distinct appearances were constructed by simply mixing polyoxometalate (phosphomolybdic acid, HPMo) and a double-tailed zwitterionic quaternary ammonium amphiphile in a binary solvent of water and dimethyl sulfoxide (DMSO). The delicate balance between electrostatic attraction and repulsion of anionic HPMo clusters and zwitterionic structures drove them to co-assemble into homogeneous organohydrogels with diverse microstructures. Notably, the morphologies of the organohydrogels, including unilamellar vesicles, onion-like vesicles, and spherical aggregates, can be controlled by adjusting the ionic interactions between the zwitterionic amphiphiles and phosphomolybdic acid clusters. Furthermore, we observed an organohydrogel fabricated with densely stacked onion-like structures (multilamellar vesicles) consisting of more than a dozen layers at certain proportions. Additionally, the relationships between the self-assembled architectures and the intermolecular interactions among the polyoxometalate, zwitterionic amphiphile, and solvent molecules were elucidated. This study offers valuable insights into the mechanisms of polyoxometalate-zwitterionic amphiphile co-assembly, which are essential for the development of materials with specific structures and emerging functionalities.

8.
Pathol Res Pract ; 259: 155353, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38797129

RESUMEN

Ferroptosis is a novel type of iron-dependent programmed cell death characterised by intracellular iron overload, increased lipid peroxidation and abnormal accumulation of reactive oxygen species.It has been implicated in the progression of several diseases including cancer, ischaemia-reperfusion injury, neurodegenerative diseases and liver disease. The etiology of endometriosis (EMS) is still unclear and is associated with multiple factors, often accompanied by various forms of cell death and a complex microenvironment. In recent decades, the role of non-traditional forms of cell death, represented by ferroptosis, in endometriosis has come to the attention of researchers. This article reviews the transitional role of iron homeostasis in the development of ferroptosis, the characteristics and regulatory mechanisms of ferroptosis, and focuses on summarising the links between iron death and various pathogenic mechanisms of EMS, including oxidative stress, dysregulation of lipid metabolism, inflammation, autophagy and epithelial-mesenchymal transition. The possible applications of ferroptosis in the treatment of EMS, future research directions and current issues are discussed with the aim of providing new ideas for further understanding of EMS.

11.
Plant Physiol Biochem ; 210: 108574, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564979

RESUMEN

Intercropping has been recommended as a beneficial cropping practice for improving soil characteristic and tea quality. However, there is limited research on the effects of intercropping fruit trees on soil chemical properties, soil aggregate structure, and tea quality components. In this study, intercropping fruit trees, specifically loquats and citrus, had a significant impact on the total available nutrients, AMN, and AP in soil. During spring and autumn seasons, the soil large-macroaggregates (>2 mm) proportion increased by 5.93% and 19.03%, as well as 29.23% and 19.14%, respectively, when intercropping loquats and citrus. Similarly, intercropping waxberry resulted in a highest small-macroaggregates (0.25 mm-2 mm) proportion at 54.89% and 77.32%. Soil aggregate stability parameters of the R0.25, MWD, and GMD were generally considered better soil aggregate stability indicators, and significantly improved in intercropping systems. Intercropping waxberry with higher values for those aggregate stability parameters and lower D values, showed a better soil aggregate distribution, while intercropping loquats and citrus at higher levels of AMN and AP in different soil aggregate sizes. As the soil aggregate sizes increased, the AMN and AP contents gradually decreased. Furthermore, the enhanced levels of amino acids were observed under loquat, waxberry, and citrus intercropping in spring, which increased by 27.98%, 27.35%, and 26.21%, respectively. The contents of tea polyphenol and caffeine were lower under loquat and citrus intercropping in spring. These findings indicated that intercropping fruit trees, specifically loquat and citrus, have immense potential in promoting the green and sustainable development of tea plantations.


Asunto(s)
Suelo , Suelo/química , Citrus/crecimiento & desarrollo , Camellia sinensis/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , , Frutas/crecimiento & desarrollo , Agricultura/métodos , Producción de Cultivos/métodos
12.
Clin Neurol Neurosurg ; 240: 108283, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608350

RESUMEN

OBJECTIVES: The relationship between cognitive function and frailty in moyamoya disease (MMD) remains unclear, and the underlying mechanism is poorly understood. This study aims to investigate whether white matter hyperintensities (WMHs) mediate the association between frailty and cognitive impairment in MMD. METHODS: Patients with MMD were consecutively enrolled in our study from January 2021 to May 2023. Pre-admission frailty and cognition were assessed using the Clinical Frailty Scale (CFS) and cognitive tests, respectively. Regional deep WMH (DWMH) and periventricular WMH (PWMH) volumes were calculated using the Brain Anatomical Analysis using Diffeomorphic deformation toolbox based on SPM 12 software. Multivariate logistic regression analysis was conducted to evaluate the association between frailty and cognitive function in MMD. Mediation analysis was performed to assess whether WMHs explained the association between frailty and cognition. RESULTS: A total of 85 patients with MMD were enrolled in this study. On the basis of the CFS scores, 24 patients were classified as frail, 38 as pre-frail, and 23 as robust. Significant differences were observed in learning, memory, processing speed, executive functions, and semantic memory among the three groups (p < 0.001). Frailty was independently associated with memory and executive functions (p < 0.05); even after controlling for WMH. Mediation analysis indicated that the associations of frailty with memory and executive functions were partially mediated by WMH, DWMH, and PWMH (p < 0.05). CONCLUSION: Frailty is significantly correlated with a higher risk of cognitive impairment in MMD, even after adjusting for other covariates. WMHs partially mediate the association between frailty and cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Fragilidad , Enfermedad de Moyamoya , Sustancia Blanca , Humanos , Masculino , Femenino , Disfunción Cognitiva/etiología , Enfermedad de Moyamoya/complicaciones , Enfermedad de Moyamoya/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Fragilidad/complicaciones , Fragilidad/diagnóstico por imagen , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
13.
Aging (Albany NY) ; 16(8): 7141-7152, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38643465

RESUMEN

Disrupted mitochondrial dynamics and mitophagy contribute to functional deterioration of skeletal muscle (SM) during aging, but the regulatory mechanisms are poorly understood. Our previous study demonstrated that the expression of thyroid hormone receptor α (TRα) decreased significantly in aged mice, suggesting that the alteration of thyroidal elements, especially the decreased TRα, might attenuate local THs action thus to cause the degeneration of SM with aging, while the underlying mechanism remains to be further explored. In this study, decreased expression of myogenic regulators Myf5, MyoD1, mitophagy markers Pink1, LC3II/I, p62, as well as mitochondrial dynamic factors Mfn1 and Opa1, accompanied by increased reactive oxygen species (ROS), showed concomitant changes with reduced TRα expression in aged mice. Further TRα loss- and gain-of-function studies in C2C12 revealed that silencing of TRα not only down-regulated the expression of above-mentioned myogenic regulators, mitophagy markers and mitochondrial dynamic factors, but also led to a significant decrease in mitochondrial activity and maximum respiratory capacity, as well as more mitochondrial ROS and damaged mitochondria. Notedly, overexpression of TRα could up-regulate the expression of those myogenic regulators, mitophagy markers and mitochondrial dynamic factors, meanwhile also led to an increase in mitochondrial activity and number. These results confirmed that TRα could concertedly regulate mitochondrial dynamics, autophagy, and activity, and myogenic regulators rhythmically altered with TRα expression. Summarily, these results suggested that the decline of TRα might cause the degeneration of SM with aging by regulating mitochondrial dynamics, mitophagy and myogenesis.


Asunto(s)
Mitocondrias , Músculo Esquelético , Sarcopenia , Receptores alfa de Hormona Tiroidea , Animales , Ratones , Envejecimiento/metabolismo , Línea Celular , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Dinámicas Mitocondriales , Mitofagia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Especies Reactivas de Oxígeno/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo
14.
Chem Asian J ; 19(11): e202400255, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38600033

RESUMEN

N,N,P-Pincer nickel complexes effectively catalyze reaction of alcohols with benzylphosphine oxides to form alkenes in good yields. The protocol suits for a wide scope of substrates and generates only E-configurated alkenes. The method also shows good compatibility of functional groups. Methoxy, methylthio, trifluoromethyl, ketal, fluoro, chloro, bromo, thienyl, and furyl groups are tolerated. The mechanism studies support that the reaction proceeds through catalytic dehydrogenation of alcohols to aldehydes or ketones followed by condensation with benzyldiphenylphosphine oxides in the presence of KOtBu.

15.
Environ Res ; 252(Pt 2): 118813, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574985

RESUMEN

After the second industrial revolution, social productivity developed rapidly, and the use of fossil fuels such as coal, oil, and natural gas increased greatly in industrial production. The burning of these fossil fuels releases large amounts of greenhouse gases such as CO2, which has caused greenhouse effects and global warming. This has endangered the planet's ecological balance and brought many species, including animals and plants, to the brink of extinction. Thus, it is crucial to address this problem urgently. One potential solution is the use of syngas fermentation with microbial cell factories. This process can produce chemicals beneficial to humans, such as ethanol as a fuel while consuming large quantities of harmful gases, CO and CO2. However, syngas-fermenting microorganisms often face a metabolic energy deficit, resulting in slow cell growth, metabolic disorders, and low product yields. This problem limits the large-scale industrial application of engineered microorganisms. Therefore, it is imperative to address the energy barriers of these microorganisms. This paper provides an overview of the current research progress in addressing energy barriers in bacteria, including the efficient capture of external energy and the regulation of internal energy metabolic flow. Capturing external energy involves summarizing studies on overexpressing natural photosystems and constructing semiartificial photosynthesis systems using photocatalysts. The regulation of internal energy metabolic flows involves two parts: regulating enzymes and metabolic pathways. Finally, the article discusses current challenges and future perspectives, with a focus on achieving both sustainability and profitability in an economical and energy-efficient manner. These advancements can provide a necessary force for the large-scale industrial application of syngas fermentation microbial cell factories.


Asunto(s)
Fermentación , Bacterias/metabolismo , Metabolismo Energético , Biocombustibles
16.
Cell Death Dis ; 15(4): 299, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678018

RESUMEN

Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.


Asunto(s)
Muerte Celular , Metales , Mitocondrias , Humanos , Mitocondrias/metabolismo , Metales/metabolismo , Animales , Mitofagia , Ferroptosis , Dinámicas Mitocondriales , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
17.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 237-243, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38538350

RESUMEN

OBJECTIVE: To investigate the effect of stress-induced protein Sestrin2 (SESN2) on necroptosis of mouse dendritic cell (DC) induced by lipopolysaccharide (LPS) combined with zVAD, a panaspartate-specific cysteine protease (caspase) inhibitor. METHODS: The DC2.4 cell line derived from the bone marrow of mouse in the 3rd to 10th generations was cultured. The cells were stimulated with LPS for 0 hour, 6 hours, 12 hours, and 24 hours, and grouped according to the stimulation time points. Western blotting was performed to determine the protein expression of SESN2 in each group. Overexpression empty lentivirus (NC), SESN2 gene overexpression RNA sequence lentivirus (SESN2 LV-RNA), small interfering empty lentivirus (NS), and SESN2 gene small interfering RNA sequence lentivirus (SESN2 siRNA) were transfected into DC2.4 cells. After 72 hours of transfection, cell fluorescence expression was observed under the inverted fluorescence microscope. Cells in each transfection group were stimulated with LPS for 24 hours. The blank control groups were set up and cultured with phosphate buffered saline (PBS) for 24 hours. Western blotting was performed to measure SESN2 protein expression. In the same groups as above, cells were stimulated with LPS+zVAD for 24 hours. The blank control groups were set up and cultured with PBS for 24 hours. Western blotting was used to determine the expression of mixed lineage kinase domain-like protein (MLKL) and phosphorylated-MLKL (p-MLKL). The p-MLKL levels and the number of positive cells were observed using laser scanning confocal microscopy. The necroptotic cell ratios were assessed by both flow cytometry and Hoechst staining. RESULTS: Compared to the LPS 0 hour group, the expression of SESN2 in the LPS 24 hours group showed a significant increase. Therefore, 24 hours was chosen as the subsequent stimulation time point. After successful lentivirus transduction and 24 hours of cultivation, the MLKL phosphorylation level in the SESN2 siRNA+LPS+zVAD group was significantly higher than that in the NS+LPS+zVAD group. The MLKL phosphorylation in the SESN2 LV-RNA+LPS+zVAD group was significantly lower than that in the NC+LPS+zVAD group. The MLKL phosphorylation levels in both the NS+LPS+zVAD group and the NC+LPS+zVAD group were obviously higher than those in the NS+PBS group and the NC+PBS group, respectively. Laser scanning confocal microscopy showed that the trends in quantity and fluorescence intensity of p-MLKL protein expressions were consistent with the above results. The results from flow cytometry analysis and Hoechst staining showed that the rates of cell necrotic apoptosis in SESN2 siRNA+LPS+zVAD group were significantly higher than those in NS+LPS+zVAD group [flow cytometry analysis: (30.800±1.153)% vs. (20.800±1.114)%, Hoechst staining: (75.267±0.451)% vs. (46.267±3.371)%, both P < 0.05], indicating that knocking down SESN2 further exacerbated the occurrence of necroptosis. The necrotic apoptosis rates in SESN2 LV-RNA+LPS+zVAD group were significantly lower than those in NC+LPS+zVAD group [flow cytometry analysis: (7.160±0.669)% vs. (19.240±2.322)%, Hoechst staining: (32.433±3.113)% vs. (48.567±4.128)%, both P < 0.05], indicating that overexpressing SESN2 reversed such response and markedly reduced the proportion of necroptotic cells compared to the corresponding empty vector group. CONCLUSIONS: SESN2 exhibits an inhibitory effect on necroptosis of DC in sepsis. Targeted SESN2 expression may regulate the process of DC-mediated immune response in sepsis.


Asunto(s)
Lipopolisacáridos , Sepsis , Ratones , Animales , Lipopolisacáridos/farmacología , Necroptosis , Apoptosis , Necrosis , ARN Interferente Pequeño
18.
Hortic Res ; 11(3): uhae018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38544547

RESUMEN

Intercropping, a green and sustainable planting pattern, has demonstrated positive effects on plant growth and the soil environment. However, there is currently little research on the influence of intercropping leguminous plants and using them as green manure on the soil environment and tea quality. During the profuse flowering period of Chinese milkvetch, the contents of tea amino acids and soluble sugar in intercropping tea plants with soybean increased by 6.89 and 54.58%. Moreover, there was 27.42% increase in soil ammonium nitrogen and 21.63% increase in available nitrogen. When Chinese milkvetch was returned to soil for 1 month during its profuse flowering period, the soybean and Chinese milkvetch as green manure enhanced tea amino acids and soluble sugar by 9.11 and 33.96%, and soil ammonium nitrogen, nitrate nitrogen and available nitrogen increased by 25.04, 77.84, and 48.90%. Intercropping systems also have positive effects on tea quality components, soil fertility, and soil microbial communities during the profuse flowering period of soybeans and when soybeans with this period were returned to the field for 1 month. Furthermore, the soil fertility index was significantly increased, especially in the intercropping system of tea-soybean-Chinese milkvetch. The soil bacterial community complexity and fungal community interactions were significantly increased. Soil pH, nitrate nitrogen, and available phosphorus were found to be crucial influencing factors on soil microbial communities, specifically bacterial communities. These results highlight the significance of optimizing intercropping systems to improve the soil environment and tea quality components. They also provide a theoretical foundation for promoting the sustainable development of tea plantations.

19.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543099

RESUMEN

To establish the fingerprint of Cibotii rhizoma using high-performance liquid chromatography (HPLC) and evaluate the quality of Cibotii rhizoma from different regions using chemometrics to identify the potential quality markers, thirteen batches of Cibotii rhizoma samples were analyzed. the similarity evaluation system of TCM chromatographic fingerprint similarity evaluation was used to confirm common peaks. The SPSS 27 software was used for hierarchical cluster analysis (HCA), and SIMCA 14.1 software was used for principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Moreover, a batch of Cibotii rhizoma was selected for LC-MS analysis and speculated on 15 common components. HPLC fingerprint were established, 15 common peaks were matched, two chromatographic peaks were identified using standard substances (protocatechuic acid and protocatechuic aldehyde), and 13 common components were inferred through liquid chromatograph-mass spectrometer (LC-MS). The 13 batches of the samples showed good similarities (>0.910). The results of HCA, PCA and OPLS-DA showed that 13 batches of samples were divided into three groups, and different markers were selected. The method is simple, rapid and reproducible, and can provide a reference for the overall quality evaluation of Cibotii rhizoma.

20.
Proc Natl Acad Sci U S A ; 121(14): e2319663121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547059

RESUMEN

The structure of dislocation cores, the fundamental knowledge on crystal plasticity, remains largely unexplored in covalent crystals. Here, we conducted atomically resolved characterizations of dislocation core structures in a plastically deformed diamond anvil cell tip that was unloaded from an exceptionally high pressure of 360 GPa. Our observations unveiled a series of nonequilibrium dislocation cores that deviate from the commonly accepted "five-seven-membered ring" dislocation core model found in FCC-structured covalent crystals. The nonequilibrium dislocation cores were generated through a process known as "mechanical quenching," analogous to the quenching process where a high-energy state is rapidly frozen. The density functional theory-based molecular dynamic simulations reveal that the phenomenon of mechanical quenching in diamond arises from the challenging relaxation of the nonequilibrium configuration, necessitating a large critical strain of 25% that is difficult to maintain. Further electronic-scale analysis suggested that such large critical strain is spent on the excitation of valance electrons for bond breaking and rebonding during relaxation. These findings establish a foundation for the plasticity theory of covalent materials and provide insights into the design of electrical and luminescent properties in diamond, which are intimately linked to the dislocation core structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA