Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Carbohydr Polym ; 337: 122145, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710553

RESUMEN

Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Hidrogeles , Ácido Hialurónico/química , Humanos , Sistemas de Liberación de Medicamentos/métodos , Materiales Biocompatibles/química , Hidrogeles/química , Animales , Liberación de Fármacos , Portadores de Fármacos/química , Ingeniería de Tejidos/métodos , Nanopartículas/química
2.
Int J Biol Macromol ; 263(Pt 1): 130177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360229

RESUMEN

Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 µg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 µg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.


Asunto(s)
Quitosano , Polielectrolitos/química , Quitosano/química , Portadores de Fármacos/química , Ácido Hialurónico , Colistina/farmacología , Vitamina B 12 , Administración Oral , Antibacterianos/farmacología
3.
Noncoding RNA ; 10(1)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38392970

RESUMEN

There are many articles on the quantitative analysis of miRNAs contained in a population of EVs of different sizes under various physiological and pathological conditions. For such analysis, it is important to correctly quantify the miRNA contents of EVs. It should be considered that quantification is skewed depending on the isolation protocol, and different miRNAs are degraded by nucleases with different efficiencies. In addition, it is important to consider the contribution of miRNAs coprecipitating with the EVs population, because the amount of miRNAs in the EVs population under study is skewed without appropriate enzymatic treatment. By studying a population of EVs from the blood plasma of healthy donors, we found that the absolute amount of miRNA inside the vesicles is commensurate with the amount of the same type of miRNA adhered to the outside of the EVs. The inside/outside ratio ranged from 1.02 to 2.64 for different investigated miRNAs. According to our results, we propose the hypothesis that high occupancy of miRNAs on the outer surface of EVs influence on the transporting RNA repertoire no less than the inner cargo received from the host cell.

4.
Pharmaceutics ; 15(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37896156

RESUMEN

Improving the biopharmaceutical properties of glucocorticoids (increasing local bioavailability and reducing systemic toxicity) is an important challenge. The aim of this study was to develop a dexamethasone phosphate (DexP) delivery system based on hyaluronic acid (HA) and a water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The DexP delivery system was a polyelectrolyte complex (PEC) resulting from interpolymer interactions between the HA polyanion and the DEAECS polycation with simultaneous incorporation of zinc ions as a cross-linking agent into the complex. The developed PECs had a hydrodynamic diameter of 244 nm and a ζ-potential of +24.4 mV; the encapsulation efficiency and DexP content were 75.6% and 45.4 µg/mg, respectively. The designed DexP delivery systems were characterized by both excellent mucoadhesion and prolonged drug release (approximately 70% of DexP was released within 10 h). In vitro experiments showed that encapsulation of DexP in polysaccharide nanocarriers did not reduce its anti-inflammatory activity compared to free DexP.

5.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511308

RESUMEN

Polymeric drug delivery systems enhance the biopharmaceutical properties of antibiotics by increasing their bioavailability, providing programmable and controlled-release properties, and reducing toxicity. In addition, drug delivery systems are a promising strategy to improve the intestinal permeability of various antimicrobial agents, including colistin (CT). This study describes the modification of conjugates based on CT and hyaluronic acid (HA) with cyanocobalamin (vitamin B12). Vitamin B12 was chosen as a targeting ligand because it has its own absorption pathway in the small intestine. The resulting polysaccharide conjugates contained 95 µg/mg vitamin B12 and the CT content was 335 µg/mg; they consisted of particles of two sizes, 98 and 702 nm, with a ζ-potential of approximately -25 mV. An in vitro release test at pH 7.4 and pH 5.2 showed an ultra-slow release of colistin of approximately 1% after 10 h. The modified B12 conjugates retained their antimicrobial activity at the level of pure CT (minimum inhibitory concentration was 2 µg/mL). The resulting delivery systems also reduced the nephrotoxicity of CT by 30-40% (HEK 293 cell line). In addition, the modification of B12 improved the intestinal permeability of CT, and the apparent permeability coefficient of HA-CT-B12 conjugates was 3.5 × 10-6 cm/s, corresponding to an in vivo intestinal absorption of 50-100%. Thus, vitamin-B12-modified conjugates based on CT and HA may be promising oral delivery systems with improved biopharmaceutical properties.


Asunto(s)
Colistina , Ácido Hialurónico , Humanos , Colistina/farmacología , Ácido Hialurónico/química , Células HEK293 , Vitamina B 12 , Sistemas de Liberación de Medicamentos/métodos
6.
Polymers (Basel) ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242937

RESUMEN

The development of polymeric carriers based on partially deacetylated chitin nanowhiskers (CNWs) and anionic sulfated polysaccharides is an attractive strategy for improved vaginal delivery with modified drug release profiles. This study focuses on the development of metronidazole (MET)-containing cryogels based on carrageenan (CRG) and CNWs. The desired cryogels were obtained by electrostatic interactions between the amino groups of CNWs and the sulfate groups of CRG and by the formation of additional hydrogen bonds, as well as by entanglement of carrageenan macrochains. It was shown that the introduction of 5% CNWs significantly increased the strength of the initial hydrogel and ensured the formation of a homogeneous cryogel structure, resulting in sustained MET release within 24 h. At the same time, when the CNW content was increased to 10%, the system collapsed with the formation of discrete cryogels, demonstrating MET release within 12 h. The mechanism of prolonged drug release was mediated by polymer swelling and chain relaxation in the polymer matrix and correlated well with the Korsmeyer-Peppas and Peppas-Sahlin models. In vitro tests showed that the developed cryogels had a prolonged (24 h) antiprotozoal effect against Trichomonas, including MET-resistant strains. Thus, the new cryogels with MET may be promising dosage forms for the treatment of vaginal infections.

7.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36982493

RESUMEN

In this work, new composite films were prepared by incorporating the disintegrated bacterial cellulose (BCd) nanofibers and cerium oxide nanoparticles into chitosan (CS) matrices. The influence of the amount of nanofillers on the structure and properties of the polymer composites and the specific features of the intermolecular interactions in the materials were determined. An increase in film stiffness was observed as a result of reinforcing the CS matrix with BCd nanofibers: the Young's modulus increased from 4.55 to 6.3 GPa with the introduction of 5% BCd. A further increase in Young's modulus of 6.7 GPa and a significant increase in film strength (22% increase in yield stress compared to the CS film) were observed when the BCd concentration was increased to 20%. The amount of nanosized ceria affected the structure of the composite, followed by a change in the hydrophilic properties and texture of the composite films. Increasing the amount of nanoceria to 8% significantly improved the biocompatibility of the films and their adhesion to the culture of mesenchymal stem cells. The obtained nanocomposite films combine a number of favorable properties (good mechanical strength in dry and swollen states, improved biocompatibility in relation to the culture of mesenchymal stem cells), which allows us to recommend them for use as a matrix material for the culture of mesenchymal stem cells and wound dressings.


Asunto(s)
Quitosano , Nanocompuestos , Nanofibras , Quitosano/química , Celulosa/química , Nanofibras/química , Resistencia a la Tracción , Nanocompuestos/química
8.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768936

RESUMEN

The marine polysaccharide fucoidan (FUC) is a promising polymer for pharmaceutical research and development of novel drug delivery systems with modified release and targeted delivery. The presence of a sulfate group in the polysaccharide makes FUC an excellent candidate for the formation of interpolyelectrolyte complexes (PECs) with various polycations. However, due to the structural diversity of FUC, the design of FUC-based nanoformulations is challenging. This review describes the main strategies for the use of FUC-based PECs to develop drug delivery systems with improved biopharmaceutical properties, including nanocarriers in the form of FUC-chitosan PECs for pH-sensitive oral delivery, targeted delivery systems, and polymeric nanoparticles for improved hydrophobic drug delivery (e.g., FUC-zein PECs, core-shell structures obtained by the layer-by-layer self-assembly method, and self-assembled hydrophobically modified FUC particles). The importance of a complex study of the FUC structure, and the formation process of PECs based on it for obtaining reproducible polymeric nanoformulations with the desired properties, is also discussed.


Asunto(s)
Quitosano , Polisacáridos , Polisacáridos/química , Sistemas de Liberación de Medicamentos , Quitosano/química , Interacciones Hidrofóbicas e Hidrofílicas
9.
Int J Biol Macromol ; 229: 329-343, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36592852

RESUMEN

Polymeric nanocomposite materials have great potential in the development of tissue-engineered scaffolds because they affect the structure and properties of polymeric materials and regulate cell proliferation and differentiation. In this work, cerium oxide nanoparticles (CeONPs) were incorporated into a chitosan (CS) film to improve the proliferation of multipotent mesenchymal stem cells (MSCs). The citrate-stabilized CeONPs with a negative ζ-potential (-25.0 mV) were precoated with CS to obtain positively charged particles (+20.3 mV) and to prevent their aggregation in the composite solution. The composite CS-CeONP films were prepared in the salt and basic forms using a dry-cast process. The films obtained in both forms were characterized by a uniform distribution of CeONPs. The incorporation of CeONPs into the salt form of CS increased the stiffness of the CS-CeONP film, while the subsequent conversion of the film to the basic form resulted in a decrease in both the Young's modulus and the yield stress. The redox activity (Ce4+ ⇌ Ce3+) of cerium oxide in the CS-CeONP film was confirmed by thermal oxidative degradation. In vitro culture of MSCs showed that the CS-CeONP film has good biocompatibility, and in vivo experiments demonstrated its substantial regenerative potential.


Asunto(s)
Cerio , Quitosano , Nanopartículas , Quitosano/química , Nanopartículas/química , Andamios del Tejido/química , Cerio/farmacología , Cerio/química
10.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36433128

RESUMEN

A new biocompatible nanocomposite film material for cell engineering and other biomedical applications has been prepared. It is based on the composition of natural polysaccharides filled with cerium oxide nanoparticles (CeONPs). The preparative procedure consists of successive impregnations of pressed bacterial cellulose (BC) with a sodium alginate (ALG) solution containing nanoparticles of citrate-stabilized cerium oxide and a chitosan (CS) solution. The presence of CeONPs in the polysaccharide composite matrix and the interaction of the nanoparticles with the polymer, confirmed by IR spectroscopy, change the network architecture of the composite. This leads to noticeable changes in a number of properties of the material in comparison with those of the matrix's polysaccharide composition, viz., an increase in mechanical stiffness, a decrease in the degree of planar orientation of BC macrochains, an increase in hydrophilicity, and the shift of the processes of thermo-oxidative destruction of the material to a low-temperature region. The latter effect is considered to be caused by the redox activity of cerium oxide (reversible transitions between the states Ce4+ and Ce3+) in thermally stimulated processes in the nanocomposite films. In the equilibrium swollen state, the material retains a mechanical strength at the level of ~2 MPa. The results of in vitro tests (cultivation of multipotent mesenchymal stem cells) have demonstrated the good biocompatibility of the BC-ALG(CeONP)-CS film as cell proliferation scaffolds.

11.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361769

RESUMEN

Mucoadhesive polymer patches are a promising alternative for prolonged and controlled delivery of topical corticosteroids (CS) to improve their biopharmaceutical properties (mainly increasing local bioavailability and reducing systemic toxicity). The main biopharmaceutical advantages of patches compared to traditional oral dosage forms are their excellent bioadhesive properties and their increased drug residence time, modified and unidirectional drug release, improved local bioavailability and safety profile, additional pain receptor protection, and patient friendliness. This review describes the main approaches that can be used for the pharmaceutical R&D of oromucosal patches with improved physicochemical, mechanical, and pharmacological properties. The review mainly focuses on ways to increase the bioadhesion of oromucosal patches and to modify drug release, as well as ways to improve local bioavailability and safety by developing unidirectional -release poly-layer patches. Various techniques for obtaining patches and their influence on the structure and properties of the resulting dosage forms are also presented.


Asunto(s)
Productos Biológicos , Sistemas de Liberación de Medicamentos , Humanos , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Preparaciones Farmacéuticas , Corticoesteroides
12.
Materials (Basel) ; 15(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36079241

RESUMEN

Polyelectrolyte complexes (PECs), based on partially deacetylated chitin nanowhiskers (CNWs) and anionic polysaccharides, are characterized by their variability of properties (particle size, ζ-potential, and pH-sensitivity) depending on the preparation conditions, thereby allowing the development of polymeric nanoplatforms with a sustained release profile for active pharmaceutical substances. This study is focused on the development of hydrogels based on PECs of CNWs and sodium alginate (ALG) for potential vaginal administration that provide controlled pH-dependent antibiotic release in an acidic vaginal environment, as well as prolonged pharmacological action due to both the sustained drug release profile and the mucoadhesive properties of the polysaccharides. The desired hydrogels were formed as a result of both electrostatic interactions between CNWs and ALG (PEC formation), and the subsequent molecular entanglement of ALG chains, and the formation of additional hydrogen bonds. Metronidazole (MET) delivery systems with the desired properties were obtained at pH 5.5 and an CNW:ALG ratio of 1:2. The MET-CNW-ALG microparticles in the hydrogel composition had an apparent hydrodynamic diameter of approximately 1.7 µm and a ζ-potential of -43 mV. In vitro release studies showed a prolonged pH-sensitive drug release from the designed hydrogels; 37 and 67% of MET were released within 24 h at pH 7.4 and pH 4.5, respectively. The introduction of CNWs into the MET-ALG system not only prolonged the drug release, but also increased the mucoadhesive properties by about 1.3 times. Thus, novel CNW-ALG hydrogels are promising carriers for pH sensitive drug delivery carriers.

13.
Int J Biol Macromol ; 215: 243-252, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35724903

RESUMEN

The development of nanotechnology-based antibiotic delivery systems (nanoantibiotics) is an important challenge in the effort to combat microbial multidrug resistance. These systems have improved biopharmaceutical characteristics by increasing local bioavailability and reducing systemic toxicity and the number and frequency of drug side effects. Conjugation of low -molecular -weight antibacterial agents with natural polysaccharides is an effective strategy for developing optimal targeted delivery systems with programmed release and reduced cytotoxicity. This study describes the synthesis of conjugates of colistin (CT) and hyaluronic acid (HA) using carbodiimide chemistry to conjugate the amino groups of CT with the carboxyl groups of HA. The obtained polysaccharide carriers had a degree of substitution (DS) with CT molecules of 3-10 %, and the CT content was 129-377 µg/mg. The size of the fabricated particles was 300-600 nm; in addition, there were conjugates in the form of single macromolecules (30-50 nm). The ζ-potential of developed systems was about -20 mV. In vitro release studies at pH 7.4 and pH 5.2 showed slow hydrolysis of amide bonds, with a CT release of 1-5 % after 24 h. The conjugates retained antimicrobial activity depending on the DS: at DS 8 %, the minimum inhibitory concentration (MIC) of the conjugate corresponded to the MIC of free CT. The resulting systems also reduced CT nephrotoxicity by 20-50 %. These new conjugates of CT with HA are promising for the development of nanodrugs for safe and effective antimicrobial therapy.


Asunto(s)
Colistina , Ácido Hialurónico , Antibacterianos/química , Antibacterianos/farmacología , Colistina/química , Sistemas de Liberación de Medicamentos/métodos , Ácido Hialurónico/química , Pruebas de Sensibilidad Microbiana , Peso Molecular
14.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613610

RESUMEN

The growth of microbial multidrug resistance is a problem in modern clinical medicine. Chemical modification of active pharmaceutical ingredients is an attractive strategy to improve their biopharmaceutical properties by increasing bioavailability and reducing drug toxicity. Conjugation of antimicrobial drugs with natural polysaccharides provides high efficiency of these systems due to targeted delivery, controlled drug release and reduced toxicity. This paper reports a two-step synthesis of colistin conjugates (CT) with succinyl chitosan (SucCS); first, we modified chitosan with succinyl anhydride to introduce a carboxyl function into the polymer molecule, which was then used for chemical grafting with amino groups of the peptide antibiotic CT using carbodiimide chemistry. The resulting polymeric delivery systems had a degree of substitution (DS) by CT of 3-8%, with conjugation efficiencies ranging from 54 to 100% and CT contents ranging from 130-318 µg/mg. The size of the obtained particles was 100-200 nm, and the ζ-potential varied from -22 to -28 mV. In vitro release studies at pH 7.4 demonstrated ultra-slow hydrolysis of amide bonds, with a CT release of 0.1-0.5% after 12 h; at pH 5.2, the hydrolysis rate slightly increased; however, it remained extremely low (1.5% of CT was released after 12 h). The antimicrobial activity of the conjugates depended on the DS. At DS 8%, the minimum inhibitory concentration (MIC) of the conjugate was equal to the MIC of native CT (1 µg/mL); at DS of 3 and 5%, the MIC increased 8-fold. In addition, the developed systems reduced CT nephrotoxicity by 20-60%; they also demonstrated the ability to reduce bacterial lipopolysaccharide-induced inflammation in vitro. Thus, these promising CT-SucCS conjugates are prospective for developing safe and effective nanoantibiotics.


Asunto(s)
Quitosano , Colistina , Colistina/farmacología , Quitosano/química , Estudios Prospectivos , Sistemas de Liberación de Medicamentos , Antibacterianos/farmacología , Antibacterianos/química
15.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34681619

RESUMEN

The development of intravitreal glucocorticoid delivery systems is a current global challenge for the treatment of inflammatory diseases of the posterior segment of the eye. The main advantages of these systems are that they can overcome anatomical and physiological ophthalmic barriers and increase local bioavailability while prolonging and controlling drug release over several months to improve the safety and effectiveness of glucocorticoid therapy. One approach to the development of optimal delivery systems for intravitreal injections is the conjugation of low-molecular-weight drugs with natural polymers to prevent their rapid elimination and provide targeted and controlled release. This study focuses on the development of a procedure for a two-step synthesis of dexamethasone (DEX) conjugates based on the natural polysaccharide chitosan (CS). We first used carbodiimide chemistry to conjugate DEX to CS via a succinyl linker, and we then modified the obtained systems with succinic anhydride to impart a negative ζ-potential to the polymer particle surface. The resulting polysaccharide carriers had a degree of substitution with DEX moieties of 2-4%, a DEX content of 50-85 µg/mg, and a degree of succinylation of 64-68%. The size of the obtained particles was 400-1100 nm, and the ζ-potential was -30 to -33 mV. In vitro release studies at pH 7.4 showed slow hydrolysis of the amide and ester bonds in the synthesized systems, with a total release of 8-10% for both DEX and succinyl dexamethasone (SucDEX) after 1 month. The developed conjugates showed a significant anti-inflammatory effect in TNFα-induced and LPS-induced inflammation models, suppressing CD54 expression in THP-1 cells by 2- and 4-fold, respectively. Thus, these novel succinyl chitosan-dexamethasone (SucCS-DEX) conjugates are promising ophthalmic carriers for intravitreal delivery.


Asunto(s)
Antiinflamatorios/química , Quitosano/química , Dexametasona/química , Portadores de Fármacos/química , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Línea Celular , Dexametasona/metabolismo , Dexametasona/farmacología , Liberación de Fármacos , Humanos , Lipopolisacáridos/farmacología , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo
16.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445088

RESUMEN

Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210-250 nm and a negative surface charge (ζ-potential = -19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30-40% and 85-90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 µg/mL.


Asunto(s)
Antibacterianos/administración & dosificación , Quitosano/química , Colistina/administración & dosificación , Portadores de Fármacos/química , Ácido Hialurónico/química , Polielectrolitos/química , Antibacterianos/farmacología , Colistina/farmacología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos
17.
Int J Biol Macromol ; 187: 157-165, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34298050

RESUMEN

Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 µg/mL (against Pseudomonas aeruginosa).


Asunto(s)
Antiinfecciosos , Colistina , Ácido Hialurónico , Polielectrolitos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Colistina/química , Colistina/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Polielectrolitos/química , Polielectrolitos/farmacología
18.
Biomedicines ; 9(4)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801776

RESUMEN

Dexamethasone (DEX) is the most commonly prescribed glucocorticoid (GC) and has a wide spectrum of pharmacological activity. However, steroid drugs like DEX can have severe side effects on non-target organs. One strategy to reduce these side effects is to develop targeted systems with the controlled release by conjugation to polymeric carriers. This review describes the methods available for the synthesis of DEX conjugates (carbodiimide chemistry, solid-phase synthesis, reversible addition fragmentation-chain transfer [RAFT] polymerization, click reactions, and 2-iminothiolane chemistry) and perspectives for their medical application as GC drug or gene delivery systems for anti-tumor therapy. Additionally, the review focuses on the development of DEX conjugates with different physical-chemical properties as successful delivery systems in the target organs such as eye, joint, kidney, and others. Finally, polymer conjugates with improved transfection activity in which DEX is used as a vector for gene delivery in the cell nucleus have been described.

19.
Int J Biol Macromol ; 158: 811-818, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32371131

RESUMEN

The topical application of ophthalmic drugs is a convenient and safe mode of drug administration. However, the bioavailability of topical drugs in the eye is low due to eye barriers and the rapid removal of the drug from the conjunctival surface by the tear fluid. The aim of this study was to obtain dexamethasone-loaded mucoadhesive self-assembled particles based on a conjugate of succinyl cholesterol with chitosan (SC-CS) for potential use as a topical ocular formulation. SC-CS was obtained via a carbodiimide-mediated coupling reaction (degree of substitution DS 1.2-5.8%). SC-CS in the DS range of 1.2-3.0% can self-organize in solution to form positively charged particles (ζ-potential 20-37 mV) of submicron size (hydrodynamic diameter 700-900 nm). The SC-CS particles show good mucoadhesiveness, which decreases with increasing DS. The obtained particles can encapsulate 159-170 µg/mg dexamethasone; they release about 50% of drug in 2 h, and the cumulative drug release reached 95% in 24 h. A cell model confirmed that dexamethasone-loaded SC-CS particles are non-cytotoxic and exhibit a comparable anti-inflammatory activity to that of pure dexamethasone. Testing the osmotic resistance of erythrocytes showed that both dexamethasone-loaded and non-loaded SC-CS particles have greater membrane-stabilizing ability than that of dexamethasone.

20.
Pharmaceuticals (Basel) ; 13(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365637

RESUMEN

Polymyxins are vital antibiotics for the treatment of multiresistant Gram-negative ESKAPE pathogen infections. However, their clinical value is limited by their high nephrotoxicity and neurotoxicity, as well as their poor permeability and absorption in the gastrointestinal tract. This review focuses on various polymyxin delivery systems that improve polymyxin bioavailability and reduce drug toxicity through targeted and controlled release. Currently, the most suitable systems for improving oral, inhalation, and parenteral polymyxin delivery are polymer particles, liposomes, and conjugates, while gels, polymer fibers, and membranes are attractive materials for topical administration of polymyxin for the treatment of infected wounds and burns. In general, the application of these systems protects polymyxin molecules from the negative effects of both physiological and pathological factors while achieving higher concentrations at the target site and reducing dosage and toxicity. Improving the properties of polymyxin will be of great interest to researchers who are focused on developing antimicrobial drugs that show increased efficacy and safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA